DOI QR코드

DOI QR Code

Composite components damage tracking and dynamic structural behaviour with AI algorithm

  • Chen, Z.Y. (Guangdong University of Petrochem Technol, Sch Sci) ;
  • Peng, Sheng-Hsiang (Department of Civil and Environmental Engineering, University of California) ;
  • Meng, Yahui (Guangdong University of Petrochem Technol, Sch Sci) ;
  • Wang, Ruei-Yuan (Guangdong University of Petrochem Technol, Sch Sci) ;
  • Fu, Qiuli (School of Computer Sci, Guangdong University of Petrochem Technol) ;
  • Chen, Timothy (Division of Engineering and Applied Science, California Institute of Technology)
  • 투고 : 2019.11.06
  • 심사 : 2021.11.10
  • 발행 : 2022.01.25

초록

This study discusses a hypothetical method for tracking the propagation damage of Carbon Reinforced Fiber Plastic (CRFP) components underneath vibration fatigue. The High Cycle Fatigue (HCF) behavior of composite materials was generally not as severe as this of admixture alloys. Each fissure initiation in metal alloys may quickly lead to the opposite. The HCF behavior of composite materials is usually an extended state of continuous degradation between resin and fibers. The increase is that any layer-to-layer contact conditions during delamination opening will cause a dynamic complex response, which may be non-linear and dependent on temperature. Usually resulted from major deformations, it could be properly surveyed by a non-contact investigation system. Here, this article discusses the scanning laser application of that vibrometer to track the propagation damage of CRFP components underneath fatigue vibration loading. Thus, the study purpose is to demonstrate that the investigation method can implement systematically a series of hypothetical means and dynamic characteristics. The application of the relaxation method based on numerical simulation in the Artificial Intelligence (AI) Evolved Bat (EB) strategy to reduce the dynamic response is proved by numerical simulation. Thermal imaging cameras are also measurement parts of the chain and provide information in qualitative about the temperature location of the evolution and hot spots of damage.

키워드

과제정보

The authors are grateful for the research grants given to Yahui Meng from the Provincial key platforms and major scientific research projects of universities in Guangdong Province, Peoples R China under Grant No. 2017GXJK116, and the research grants given to ZY Chen from the Projects of Talents Recruitment of GDUPT (NO. 2021rc002) in Guangdong Province, Peoples R China No. 2021rc002 as well as to the anonymous reviewers for constructive suggestions.

참고문헌

  1. Adam, T.J. and Horst, P. (2014), "Hypothetical investigation of the very high cycle fatigue of GFRP [90/0] s cross-ply specimens subjected to high-frequency four-point bending", Compos. Sci. Technol., 101, 62-70. https://doi.org/10.1016/j.compscitech.2014.06.023.
  2. Adeli, H. and Jiang, X.M. (2006), "Dynamic fuzzy wavelet neural network model for structural system identification", J. Struct. Eng., 132(1), 102-111. https://doi.org/10.1061/(asce)0733-9445(2006)132:1(102)
  3. Antonio, C.A.C. (2012), "Design with composites: material uncertainty in designing composites component", Wiley Encyclopedia Compos., 1-12. https://doi.org/10.1002/9781118097298.weoc068.
  4. Backe, D., Balle, F. and Eifler, D. (2015), "Fatigue testing of CRFP in the very high cycle fatigue (VHCF) regime at ultrasonic frequencies", Compos. Sci. Technol., 106, 93-99. https://doi.org/10.1016/j.compscitech.2014.10.020
  5. Bak, B.L.V., Sarrado, C., Turon, A. and Costa, J. (2014), "Delamination under fatigue loads in composite laminates: a review on the observed phenomenology and computational means", Appl. Mech. Rev., 66(6), 060803. https://doi.org/10.1115/1.4027647.
  6. Battista, R.C. and Varela, W.D. (2019), "A system of multiple controllers for attenuating the dynamic response of multimode floor structures to human walking", Smart Struct. Syst., 23(5), 467-478. https://doi.org/10.12989/sss.2019.23.5.467.
  7. Bedirhanoglu, I. (2014), "A practical neuro-fuzzy model for estimating modulus of elasticity of concrete", Struct. Eng. Mech., 51(2), 249-265. https://doi.org/10.12989/sem.2014.51.2.249.
  8. Cairns, D.S., Mandell, J.F., Scott, M.E. and Maccagnano, J.Z. (1999), "Design and manufacturing considerations for ply drops in composite structures", Compos. Part B, 30, 523-534. https://doi.org/10.1016/S1359-8368(98)00043-2.
  9. Carrella, A. and Ewins, D.J. (2011), "Identifying and quantifying structural nonlinearities in engineering applications from measured frequency response functions", Mech. Syst. Signal Pr., 25(3), 1011-1027. https://doi.org/10.1016/j.ymssp.2010.09.011.
  10. Chawla, K.K. (2012), Fatigue and Creep, Springer, New York.
  11. Chen, C.W. (2014), "A criterion of robustness intelligent nonlinear control for multiple time-delay systems based on fuzzy Lyapunov means", Nonlinear Dyn., 76(1), 23-31, https://doi.org/10.1007/s11071-013-0869-9.
  12. Chen, C.W. (2014), "Interconnected TS fuzzy technique for nonlinear time-delay structural systems", Nonlinear. Dyn., 76(1), 13-22. https://doi.org/10.1007/s11071-013-0841-8.
  13. Chen, C.Y.J. (2020), "System simulation and synchronization for optimal evolutionary design of nonlinear controlled systems", Smart Struct. Syst., 26(6), 797-807. https://doi.org/10.12989/sss.2020.26.6.797.
  14. Chen, T. (2019), "Decentralized fuzzy C-Means robust algorithm for continuous systems", Aircraft Eng. Aeros. Technol., 92(2), 222-228. https://doi.org/10.1108/AEAT-04-2019-0082
  15. Chen, T. (2019), "Hazard data analysis for underwater vehicles by submarine casualties", Marine Technol. Soc. J., 53(6), 21-26. https://doi.org/10.4031/MTSJ.53.6.2
  16. Chen, T. (2019), "Meteorological tidal predictions in the mekong estuary using an evolved ANN time series", Marine Technol. Soc. J., 53(6), 27-34. https://doi.org/10.4031/MTSJ.53.6.3
  17. Chen, T. (2019), "Modelling and verification of an automatic controller for a water treatment mixing tank", Desalination Water Treatment, 159, 318-326. https://doi.org/10.5004/dwt.2019.24143
  18. Chen, T. (2020), "A composite control for UAV systems with time delays", Aircraft Eng. Aeros. Technol., 92(7), 949-954. https://doi.org/10.1108/AEAT-11-2019-0219.
  19. Chen, T. (2020), "An intelligent algorithm optimum for building design of fuzzy structures", Iran. J. Sci. Technol. Transactions of Civil Engineering 44, 523-531. https://doi.org/10.1007/s40996-019-00251-5
  20. Chen, T. (2020), "Intelligent Fuzzy Algorithm for Nonlinear Discrete-time Systems", Transact. Institute Measurement Control, 42(7), 1358-1374. https://doi.org/10.1177/0142331219891383.
  21. Chen, T. (2020), "PDC Intelligent control-based theory for structure system dynamics", Smart Struct. Syst., 25(4), 401-408. https://doi.org/10.12989/sss.2020.25.4.401.
  22. Chen, T. (2020), "Using evolving ANN-based algorithm models for accurate meteorological forecasting applications in Vietnam", Mathem. Prob. Eng., 8179652, https://doi.org/10.1155/2020/8179652.
  23. Chen, T. (2021), "Evolved auxiliary controller with applications to aerospace", Aircr. Eng. Aerosp. Technol., 93(4), 529-543. https://doi.org/10.1108/AEAT-12-2019-0233
  24. Chen, T. (2021), "Fuzzy C-means robust algorithm for nonlinear systems", Soft Comput., 25(11), 7297-7305. https://doi.org/10.1007/s00500-021-05655-y
  25. Chen, Z. (2021), "Apply a robust fuzzy LMI control scheme with AI algorithm to civil frame building dynamic analysis", Comput. Concrete, 28(4) 433-440. https://doi.org/10.12989/CAC.2021.28.4.433
  26. Chen, Z. (2021), "Grey signal predictor and evolved control for practical nonlinear mechanical systems", J. Grey Syst., 33(1), 156-170.
  27. Chen, Z.Y. (2022), "Grey signal predictor and FNN evolved control for practical nonlinear systems", J. Eng. Res., https://doi.org/10.36909/jer.11273.
  28. Chen, Z.Y. (2022), "NN model-based evolved control by DGM model for practical nonlinear systems", Exp. Syst. Appl., https://doi.org/10.1016/j.eswa.2021.115873.
  29. Chen, Z.Y. (2022), "Stochastic intelligent GA-NN controller design for active TMD shear building", Struct. Eng. Mech., 81(1), 51-57.
  30. Chen, Z.Y. (2022), "Systematic fuzzy navier-stokes equations for aerospace vehicles", Aircraft Eng. Aerosp. Technol., https://doi.org/10.1108/AEAT-06-2020-0109.
  31. Claeys, J. and Van, Wittenberghe, J. (2011), "Characterisation of a resonant bending fatigue test setup for pipes", Sustain. Construct. Des., 1, 424-431.
  32. Cotrell, J., Thresher, R., Lambert, S., Hughes, S. and Johnson, J. (2014), U.S. Patent No. 8,677,827, Washington, D.C., U.S.
  33. Di Maio, D. and Magi, F. (2015), "Development of testing means for endurance trials of composites components", J. Compos. Mater. 49(24), 2977-2991. https://doi.org/10.1177/0021998314558497.
  34. Eswaran, M. and Reddy, G.R. (2016), "Numerical simulation of tuned liquid tank-structure systems through sigmatransformation based fluid-structure coupled solver", Wind Struct., 23(5), 421-447. https://doi.org/10.12989/was.2016.23.5.421.
  35. Ewins, D.J. (1984), Modal testing: theory and practice. Research Studies Press, Letchworth.
  36. Gu, J., Sol, H. and Van Paepegem, W. (2009), "The study of resonance fatigue testing of test beams made of composite material, Proceedings of PACAM XI.
  37. Harris, B. (2003), The Vibration Techniques to Obtain Fatigue, Woodhead Publishing, Cambridge.
  38. Hsaio, F. H. (2007), "The stability of an oceanic structure with T-S fuzzy models", Math. Comput. Simul., 80, 402-426. https://doi.org/10.1016/j.matcom.2009.08.001
  39. Hsaio, F.H. (2005), "Fuzzy lyapunov method for stability conditions of nonlinear systems", Int. J. Artif. Intell. Tools, 15, 163-172. https://doi.org/10.1142/S0218213006002618
  40. Hsaio, F.H. (2005), "Robust stabilization of nonlinear multiple time-delay large-scale systems via decentralized fuzzy control", IEEE Trans. Fuzzy Syst., 13(2005), 152-163. https://doi.org/10.1109/TFUZZ.2004.836067
  41. Hsaio, F.H. (2005), "Stability conditions of fuzzy systems and its application to structural and mechanical systems", Adv. Eng. Softw. 37(2006), 624-629.
  42. Hsaio, F.H. (2005), "T-S fuzzy controllers for nonlinear interconnected systems with multiple time delays", IEEE Trans. Circuits Syst. I Regul. Pap. 52-I, 1883-1893.
  43. Hsaio, F.H. (2007), "A novel delay-pependent criterion for time-delay T-S fuzzy systems using fuzzy Lyapunov method", Int. J. Artif. Intell. Tools, 16, 545-552. https://doi.org/10.1142/S0218213007003400
  44. Hsaio, F.H. (2007), "Modeling, H∞ control and stability analysis for structural systems using Takagi-Sugeno fuzzy model", Journal of Vibration and Control 13: 1519 - 1534. https://doi.org/10.1177/1077546307073690
  45. Hsaio, F.H. (2007), "Robustness design of time-delay fuzzy systems using fuzzy Lyapunov method", Appl. Math. Comput. 205, 568-577. https://doi.org/10.1016/j.amc.2008.05.104
  46. Hsaio, F.H. (2009), "A stability criterion for time-delay tension leg platform systems subjected to external force", China Ocean Eng., 23, 49-57.
  47. Hsaio, F.H. (2009), "Adaptive fuzzy sliding mode control for seismically excited bridges with lead rubber bearing isolation", Int. J. Uncertain. Fuzziness Knowl. Based Syst., 17, 705-727. https://doi.org/10.1142/S0218488509006224
  48. Hsaio, F.H. (2009), "Fuzzy control for an oceanic structure: A case study in time-delay TLP system", J. Vib. Control, 16, 147-160. https://doi.org/10.1177/1077546309339424
  49. Hsaio, F.H. (2009), "Modeling and control for nonlinear structural systems via a NN-based approach", Expert Syst. Appl. 36, 4765-4772. https://doi.org/10.1016/j.eswa.2008.06.062
  50. Hsaio, F.H. (2011), "Modeling, control, and stability analysis for time-delay TLP systems using the fuzzy Lyapunov method", Neural Comput. Appl., 20, 527-534. https://doi.org/10.1007/s00521-011-0576-8
  51. Hsaio, F.H. (2011), "Stability analysis and robustness design of nonlinear systems: An NN-based approach", Appl. Soft Comput. 11, 2735-2742. https://doi.org/10.1016/j.asoc.2010.11.004
  52. Hsaio, F.H. (2011), "Stability analysis of an oceanic structure using the Lyapunov method", Eng. Comput., 27, 186-204. https://doi.org/10.1108/02644401011022364
  53. Hsaio, F.H. (2011), "Stabilization of adaptive neural network controllers for nonlinear structural systems using a singular perturbation approach", J. Vib. Control, 17, 1241-1252. https://doi.org/10.1177/1077546309352827
  54. Hung C.C. (2019), "Optimal fuzzy design of Chua's cirquit system", International Journal of Innovative Computing, Information and Control, 15(6), 2355-2366.
  55. Just-Agosto, F., Shafiq, B., Peralta, A. and Serrano, D. (2009), "Fatigue in composites: science and technology of the fatigue response of fibre-reinforced plastics", Proceedings of ICCM-17 Edinburgh, Scotland, 27-31 July 2009.
  56. Katunin, A. and Fidali, M. (2012), "Self-heating of polymeric laminated composite plates under the resonant vibrations: Theoretical and hypothetical study", Polym. Compos., 33, 138-146. https://doi.org/10.1002/pc.22134.
  57. Lazan, B.J. (1954), "Fatigue failure under resonant vibration conditions", Tech. Report March, Wright air development center.
  58. Lim, S.G. and Hong, C.S. (1989), "Prediction of transverse cracking and stiffness reduction in cross-ply laminated composites", J. Compos. Mater., 23(7), 695-713. https://doi.org/10.1177/002199838902300704.
  59. Lu, X., Lestari, W. and Hanagud, S. (2001), "Nonlinear vibrations of a delaminated beam", J. Vib. Control., 7(6), 803-831. https://doi.org/10.1177/107754630100700603.
  60. Magi, F., Di Maio, D. and Sever, I. (2016), "Damage initiation and structural degradation through resonance vibration: Application to composite laminates in fatigue", Compos. Sci. Technol. 132, 47-56. https://doi.org/10.1016/j.compscitech.2016.06.013.
  61. Magi, F., Di Maio, D. and Sever, I. (2017), "Validation of initial crack propagation under vibration fatigue by finite element analysis", Int. J. Fatigue, 104, 183-119. https://doi.org/10.1016/j.ijfatigue.2017.07.003.
  62. Mandell, J.F. (1981), "Fatigue crack growth in fiber reinforced plastics", Polym. Compos. 2(1), 22-28. https://doi.org/10.1002/pc.750020106.
  63. Mori, T. (1985), "Criteria for asymptotic stability of linear time delay systems", IEEE Trans., 30(2), 158-162.
  64. Musial, W. and White, D. (2011), Alliance for Sustainable Energy, Llc, assignee. Resonance test system. United States patent US 7,953,561. 31 May 2011.
  65. Nairn, J.A. and Hu, S. (1992), "The initiation and growth of delaminations induced by matrix microcracks in laminated composites", Int. J. Fract. 24, 1-24. https://doi.org/10.1007/BF00013005.
  66. Pickard, A. (2012), High Cycle Endurance of Carbon Fibre Reinforced Plastic: Delamination Prediction and Measurement, Ph.D. Dissertation, University of Bristol.
  67. Preumont, A. (2011), Vibration Control of Active Structures: An Introduction, Springer.
  68. Rabiei, K., Ordokhani, Y. and Babolian, E. (2017), "The Boubaker polynomials and their application to solve fractional optimal control problems", Nonlinear Dyn., 88(2), 1013-1026. https://doi.org/10.1007/s11071-013-0841-8.
  69. Razavi, A. and Sarkar, P.P. (2018), "Laboratory investigation of the effects of translation on the near-ground tornado flow field", Wind Struct., 26(3), 179-190, https://doi.org/10.12989/was.2018.26.3.179.
  70. Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steelconcrete composite beam's shear strength", Steel Compos. Struct., 21(3), 679-688. https://doi.org/10.12989/scs.2016.21.3.679.
  71. Shariat, M., Shariati, M., Madadi, A. and Wakil, K. (2018), "Computational Lagrangian multiplier method by using optimization and sensitivity analysis of rectangular reinforced concrete beams", Steel Compos. Struct., 29(2), 243-256. http://dx.doi.org/10.12989/scs.2018.29.2.243.
  72. Shariatmadar, H. and Razavi, H.M. (2014), "Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method", Struct. Eng. Mech., 51(4), 547-564. https://doi.org/10.12989/sem.2014.51.4.547.
  73. Shen, W., Zhu, S., Zhu, H. and Xu, Y.L. (2016), "Electromagnetic energy harvesting from structural vibrations during earthquakes", Smart Struct. Syst., 18(3), 449-470. https://doi.org/10.12989/sss.2016.18.3.449
  74. Sjogren, A. and Asp, L.E. (2002), "Effects of temperature on delamination growth in a carbon/epoxy composite under fatigue loading", Int. J. Fatigue, 24, 179-184. https://doi.org/10.1016/S0142-1123(01)00071-8.
  75. Son, L., Bur, M., Rusli, M. and Adriyan, A. (2016), "Design of double dynamic vibration absorbers for reduction of two DOF vibration system", Struct. Eng. Mech., 57(1), 161-178. https://doi.org/10.12989/sem.2016.57.1.161.
  76. Talreja, R. (2008), "Damage and fatigue in composites - A personal account", Compos. Sci. Technol., 68(13), 2585-2591. https://doi.org/10.1016/j.compscitech.2008.04.042.
  77. Trinh, H. and Aldeen, M. (1995), "A comment on decentralized stabilization of large scale interconnected systems with delays", IEEE Trans., 40(5), 914-916.
  78. Tsai, P.W., Hayat, T., Ahmad, B. and Chen, C.W. (2015), "Structural system simulation and control via NN based fuzzy model", Struct. Eng. Mech., 56(3), 385-407. https://doi.org/10.12989/sem.2015.56.3.385.
  79. Tsai, P.W., Pan, J.S., Liao, B.Y. and Chu, S.C. (2009), "Enhanced artificial bee colony optimization", Int. J. Innov. Comput. I., 5(12), 5081-5092.
  80. Tsai, P.W., Pan, J.S., Liao, B.Y., Tsai, M.J. and Istanda, V. (2012), "Bat algorithm inspired algorithm for solving numerical optimization problems", Appl. Mech. Mater., 148, 134-137. https://doi.org/10.4028/www.scientific.net/AMM.148-149.134.
  81. Tsai, P.W., Pan, J.S., Liao, B.Y., Tsai, M.J. and Istanda, V. (2012), "A novel strategy to determine the insurance and risk control plan for natural disaster risk management", Nat. Haz., 64, 1391-1403. https://doi.org/10.1007/s11069-012-0305-3
  82. Varvani-Farahani, H. and Mivehchi, A. (2011), "Temperature dependence of stress-fatigue life data of FRP composites", Mech. Compos. Mater., 47(3), 185-192. https://doi.org/10.1007/s11029-011-9197-7.
  83. Wozney, G.P. (1962), "Resonant-vibration fatigue testing", Exp. Mech., 2, 1-8. https://doi.org/10.1007/BF02325804.
  84. Yang, J.N., Wu, J.C. Agrawal, A.K. and Li, Z. (1995), "Sliding mode control for nonlinear and hysteric structures", J. Eng. Mech., 121(12), 1330-1339. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:12(1330).
  85. Ying, Z.G., Ni, Y.Q. and Duan, Y.F. (2019), "Stochastic stability control analysis of an inclined stay cable under random and periodic support motion excitations", Smart Struct. Syst., 23, 641-651. https://doi.org/10.12989/sss.2019.23.6.641.
  86. Zaky, M.A. (2018), "A Legendre collocation method for distributed order fractional optimal control problems", Nonlinear Dyn., 91(4), 2667-2681. https://doi.org/10.1007/s11071-013-0869-9.
  87. Zandi, Y., Shariati, M., Marto, A., Wei, X., Karaca, Z., Dao, D., Toghroli, A., Hashemi, M.H., Sedghi, Y., Wakil, K. and Khorami, M. (2018), "Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake", Steel Compos. Struct., 28(4), 439-447. http://dx.doi.org/10.12989/scs.2018.28.4.439.
  88. Zhang, Y. (2015), "A fuzzy residual strength based fatigue life prediction method", Struct. Eng. Mech., 56(2), 201-221. https://doi.org/10.12989/sem.2015.56.2.201.
  89. Zhou, X., Lin, Y. and Gu, M. (2015), "Optimization of multiple tuned mass dampers for large-span roof structures subjected to wind loads", Wind Struct., 20(3), 363-388. https://doi.org/10.12989/was.2015.20.3.363.