DOI QR코드

DOI QR Code

PIV study of the flow around a 5:1 rectangular cylinder at moderate Reynolds numbers and small incidence angles

  • Guissart, Amandine (Institute for Fluid Mechanics and Aerodynamics, Technische Universitat Darmstadt) ;
  • Elbaek, Erik (Institute for Fluid Mechanics and Aerodynamics, Technische Universitat Darmstadt) ;
  • Hussong, Jeanette (Institute for Fluid Mechanics and Aerodynamics, Technische Universitat Darmstadt)
  • 투고 : 2021.03.26
  • 심사 : 2021.06.01
  • 발행 : 2022.01.25

초록

This work comes within the framework of the "Benchmark on the Aerodynamics of a Rectangular Cylinder" that investigates a rectangular cylinder of length-to-depth ratio equal to 5. The present study reports and discusses velocity fields acquired using planar Particle Image Velocitmetry for several angles of attack and Reynolds numbers. In particular, for a cylinder depth-based Reynolds number of 2 × 104 and zero incidence angle, the flow features along the lateral (parallel to the freestream) upper and lower surfaces of the cylinder are reported. Using first and second order statistics of the velocity field, the main flow features are discussed, especially the size and location of the time-averaged flow structures and the distribution of the Reynolds stresses. The variation of the flow features with the incidence is also studied considering angles of attack up to 6°. It is shown that the time-averaged flow is fully detached for incidence higher than 2°. For an angle of attack of 0°, the effects of the Reynolds number varying between 5 × 103 and 2 × 104 are investigated looking at flow statistics. It is shown that the time-averaged location of the reattachment point and the shape and position of the time-averaged main vortex are mostly constant with the Reynolds number. However, the size of the inner region located below the time-averaged shear layer and just downstream the leading edge corner appears to be strongly dependent on the Reynolds number.

키워드

과제정보

The work of Amandine Guissart was partly supported by the TU Darmstadt through its "Future Talents" Short-term Scholarship and its Career Bridging Grant. The authors thank Alexander Kohlstetter, Johannes Kissing and the SLA Institute workshop for their assistance with the construction of the experimental setup and the running of experiments.

참고문헌

  1. Bartoli, G., Bruno, L., Buresti, G., Ricciardelli, F., Salvetti, M. and Zasso, A. (2008), "BARC overview document", http://www.aniv-iawe.org/barc.
  2. Bruno, L., Coste, N. and Fransos, D. (2012), "Simulated flow around a rectangular 5:1 cylinder: Spanwise discretisation effects and emerging flow features", J. Wind Eng. Ind. Aerod., 104-106, 203-215. https://doi.org/10.1016/j.jweia.2012.03.018.
  3. Bruno, L., Fransos, D., Coste, N. and Bosco, A. (2010), "3D flow around a rectangular cylinder: A computational study", J. Wind Eng. Ind. Aerod., 98(6-7), 263-276, https://doi.org/10.1016/j.jweia.2009.10.005.
  4. Bruno, L., Salvetti, M.V. and Ricciardelli, F. (2014), "Benchmark on the aerodynamics of a rectangular 5:1 cylinder: An overview after the first four years of activity", J. Wind Eng. Ind. Aerod., 126, 87-106, https://doi.org/10.1016/j.jweia.2014.01.005.
  5. Carassale, L., Freda, A. and Marre-Brunenghi, M. (2014), "Experimental investigation on the aerodynamic behavior of square cylinders with rounded corners", J. Fluids Struct., 44, 195-204, https://doi.org/10.1016/j.jfluidstructs.2013.10.010.
  6. Cimarelli, A., Leonforte, A. and Angeli, D. (2018), "Direct numerical simulation of the flow around a rectangular cylinder at a moderately high Reynolds number", J. Wind Eng. Ind. Aerod., 174, 39-49, https://doi.org/10.1016/j.jweia.2017.12.020.
  7. Crompton, M.J. and Barrett, R.V. (2000), "Investigation of the separation bubble formed behind the sharp leading edge of a flat plate at incidence", Proceedings of the Institution Mech. Eng., Part G: J. Aero. Eng., 214(3), 157-176, https://doi.org/10.1243/0954410001531980.
  8. Graftieaux, L., Michard, M. and Grosjean, N. (2001), "Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows", Measur. Sci. Technol., 12(9), 1422. https://doi.org/10.1088/0957-0233/12/9/307.
  9. Guissart, A., Andrianne, T., Dimitriadis, G. and Terrapon, V.E. (2019), "Numerical and experimental study of the flow around a 4:1 rectangular cylinder at moderate Reynolds number", J. Wind Flow Eng. Ind. Aerod., 189, 289-303. https://doi.org/10.1016/j.jweia.2019.03.026.
  10. Mannini, C., Marra, A.M., Pigolotti, L. and Bartoli, G. (2017), "The effects of free-stream turbulence and angle of attack on the aerodynamics of a cylinder with rectangular 5:1 cross section", J. Wind Eng. Ind. Aerod., 161, 42-58. https://doi.org/10.1016/j.jweia.2016.12.001.
  11. Mannini, C., Soda, A. and Schewe, G. (2010), "Unsteady RANS modelling of flow past a rectangular cylinder: Investigation of Reynolds number effects", Comput. Fluids, 39(9), 1609-1624. https://doi.org/10.1016/j.compfluid.2010.05.014.
  12. Mannini, C., Soda, A. and Schewe, G. (2011), "Numerical investigation on the three-dimensional unsteady flow past a 5:1 rectangular cylinder", J. Wind Eng. Ind. Aerod., 99(4), 469-482. https://doi.org/10.1016/j.jweia.2010.12.016.
  13. Mariotti, A., Salvetti, M.V., Shoeibi Omrani, P. and Witteveen, J.A.S. (2016), "Stochastic analysis of the impact of freestream conditions on the aerodynamics of a rectangular 5:1 cylinder", Comput. Fluids, 136, 170-192. https://doi.org/10.1016/j.compfluid.2016.06.008.
  14. Markus, D. (2016), Vermessung des Eiffel-Windkanals des Fachgebietes SLA, Technical Report, Technische Universitat Darmstadt, Darmstadt.
  15. Matsumoto, M., Shirato, H., Araki, K., Haramura, T. and Hashimoto, T. (2003), "Spanwise coherence characteristics of surface pressure field on 2-D bluff bodies", J. Wind Eng. Ind. Aerod., 91(1-2), 155-163. https://doi.org/10.1016/S0167-6105(02)00342-2.
  16. Moore, D. and Amitay, M. (2021), "Production and migration of turbulent kinetic energy in bluff body shear layers", Int. J. Heat Fluid Flow, 88, 108716. https://doi.org/10.1016/j.ijheatfluidflow.2020.108716.
  17. Moore, D.M., Letchford, C.W. and Amitay, M. (2019), "Energetic scales in a bluff body shear layer", J. Fluid Mech., 875, 543-575. https://doi.org/10.1017/jfm.2019.480.
  18. Nakaguchi, H., Hashimoto, K. and Muto, S. (1968), "An experimental study on aerodynamic drag of rectangular cylinders", J. Japan Soc. Aeronaut. Eng., 16(168), 1-5, https://doi.org/10.2322/jjsass1953.16.1.
  19. Nakamura, Y. and Mizota, T. (1975), "Torsional Flutter of Rectangular Prisms", J. Eng. Mech. Div., 101(2), 125-142. https://doi.org/10.1061/JMCEA3.0002001.
  20. Okajima, A. (1983), "Flow around a rectangular cylinder with a section of various width/height ratios", J. Wind Eng. Ind. Aerod., 1983(17), 1-19. https://doi.org/10.5359/JAWE.1983.17_1.
  21. Patruno, L., Ricci, M., de Miranda, S. and Ubertini, F. (2016), "Numerical simulation of a 5:1 rectangular cylinder at non-null angles of attack", J. Wind Eng. Ind. Aerod., 151, 146-157. https://doi.org/10.1016/j.jweia.2016.01.008.
  22. Ricci, M., Patruno, L., de Miranda, S. and Ubertini, F. (2017), "Flow field around a 5:1 rectangular cylinder using LES: Influence of inflow turbulence conditions, spanwise domain size and their interaction", Comput. Fluids, 149, 181-193. https://doi.org/10.1016/j.compfluid.2017.03.010.
  23. Rival, D.E. (2009), Development, Control and Recovery of Leading- and Trailing-Edge Vortices in Tandem-Airfoil Configurations, Ph.D. Dissertation, Technische Universitat Darmstadt, Darmstadt.
  24. Robertson, J.M., Cermak, J.E. and Nayak, S.K. (1975), "A Reynolds-number effect in flow past prismatic bodies", Mech. Res. Commun., 2(5), 279-282. https://doi.org/10.1016/0093-6413(75)90058-0.
  25. Robertson, J.M., Wedding, J.B., Peterka, J.A. and Cermak, J.E. (1978), "Wall pressures of separation-reattachment flow on a square prism in uniform flow", J. Wind Eng. Ind. Aerod., 2(4), 345-359, https://doi.org/10.1016/0167-6105(78)90019-3.
  26. Rocchio, B., Mariotti, A. and Salvetti, M. (2020), "Flow around a 5:1 rectangular cylinder: Effects of upstreamedge rounding", J. Wind Eng. Ind. Aerod., 204, 104237. https://doi.org/10.1016/j.jweia.2020.104237.
  27. Schewe, G. (2013), "Reynolds-number-effects in flow around a rectangular cylinder with aspect ratio 1:5", J. Fluids Struct., 39, 15-26. https://doi.org/10.1016/j.jfluidstructs.2013.02.013.
  28. Shimada, K. and Ishihara, T. (2002), "Application of a modified k - ε model to the prediction of aerodynamic characteristics of rectangular cross-section cylinders", J. Fluids Struct., 16(4), 465-485. https://doi.org/10.1006/jfls.2001.0433.
  29. Stokes, A.N. and Welsh, M.C. (1986), "Flow-resonant sound interaction in a duct containing a plate, II: Square leading edge", J. Sound Vib., 104(1), 55-73, https://doi.org/10.1016/S0022-460X(86)80131-6.
  30. Tamura, T., Itoh, Y. and Kuwahara, K. (1993), "Computational separated-reattaching flows around a rectangular cylinder", J. Wind Eng. Ind. Aerod., 50, 9-18, https://doi.org/10.1016/0167-6105(93)90056-T.
  31. Washizu, K., Ohya, A., Otsuki, Y. and Fujii, K. (1978), "Aeroelastic instability of rectangular cylinders in a heaving mode", J. Sound Vib., 59(2), 195-210, https://doi.org/10.1016/0022-460X(78)90500-X.
  32. Widmann, A.G.M. (2015), Formation and Detachment of Leading Edge Vortices on Unsteady Airfoils, Ph.D. Dissertation, Technische Universitat Darmstadt, Darmstadt.
  33. Wu, B., Li, S., Li, K. and Zhang, L. (2020), "Numerical and experimental studies on the aerodynamics of a 5:1 rectangular cylinder at angles of attack", J. Wind Eng. Ind. Aerod., 199, 104097. https://doi.org/10.1016/j.jweia.2020.104097.
  34. Yu, D. and Kareem, A. (1998), "Parametric study of flow around rectangular prisms using LES", J. Wind Eng. Ind. Aerod., 77-78, 653-662. https://doi.org/10.1016/S0167-6105(98)00180-9.
  35. Zhang, Z. and Xu, F. (2020), "Spanwise length and mesh resolution effects on simulated flow around a 5:1 rectangular cylinder", J. Wind Eng. Ind. Aerod., 202, 104186. https://doi.org/10.1016/j.jweia.2020.104186.