DOI QR코드

DOI QR Code

The importance of corner sharpness in the BARC test case: A numerical study

  • Chiarini, Alessandro (Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano) ;
  • Quadrio, Maurizio (Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano)
  • Received : 2021.03.31
  • Accepted : 2021.07.07
  • Published : 2022.01.25

Abstract

The BARC flow is studied via Direct Numerical Simulation at a relatively low turbulent Reynolds number, with focus on the geometrical representation of the leading-edge (LE) corners. The study contributes to further our understanding of the discrepancies between existing numerical and experimental BARC data. In a first part, rounded LE corners with small curvature radii are considered. Results show that a small amount of rounding does not lead to abrupt changes of the mean fields, but that the effects increase with the curvature radius. The shear layer separates from the rounded LE at a lower angle, which reduces the size of the main recirculating region over the cylinder side. In contrast, the longitudinal size of the recirculating region behind the trailing edge (TE) increases, as the TE shear layer is accelerated. The effect of the curvature radii on the turbulent kinetic energy and on its production, dissipation and transport are addressed. The present results should be contrasted with the recent work of Rocchio et al. (2020), who found via implicit Large-Eddy Simulations at larger Reynolds numbers that even a small curvature radius leads to significant changes of the mean flow. In a second part, the LE corners are fully sharp and the exact analytical solution of the Stokes problem in the neighbourhood of the corners is used to locally restore the solution accuracy degraded by the singularity. Changes in the mean flow reveal that the analytical correction leads to streamlines that better follow the corners. The flow separates from the LE with a lower angle, resulting in a slightly smaller recirculating region. The corner-correction approach is valuable in general, and is expected to help developing high-quality numerical simulations at the high Reynolds numbers typical of the experiments with reasonable meshing requirements.

Keywords

Acknowledgement

Computing time has been provided by the Italian supercomputing center CINECA under the ISCRA C projects TAWBF and AGKEbump.

References

  1. Anzai, Y., Fukagata, K., Meliga, P., Boujo, E. and Gallaire, F. (2017), "Numerical simulation and sensitivity analysis of a low- Reynolds-number flow around a square cylinder controlled using plasma actuators", Phys. Rev. Fluids, 2(4), 043901. https://doi.org/10.1103/PhysRevFluids.2.043901.
  2. Auteri, F., Parolini, N. and Quartapelle, L. (2003), "Essential imposition of Neumann condition in Galerkin-Legendre elliptic solvers", J. Comp. Phys., 185(2), 427-444. https://doi.org/10.1016/S0021-9991(02)00064-5.
  3. Bruno, L., Coste, N. and Fransos, D. (2012), "Simulated flow around a rectangular 5:1 cylinder: Spanwise discretisation effects and emerging flow features", J. Wind Eng. Ind. Aerod., 104-106, 203-215. https://doi.org/10.1016/j.jweia.2012.03.018.
  4. Bruno, L., Salvetti, M.V. and Ricciardelli, F. (2014), "Benchmark on the aerodynamics of a rectangular 5:1 cylinder: An overview after the first four years of activity", J. Wind Eng. Ind. Aerod., 126, 87-106. https://doi.org/10.1016/j.jweia.2014.01.005.
  5. Burda, P., Novotny, J. and Sistek, J. (2012), "Analytical solution of Stokes flow near corners and applications to numerical solution of Navier-Stokes equations with high precision", Proceedings of the Conference Applications of Mathematics, Prague, Czech Republic
  6. Cao, Y. and Tamura, T. (2017), "Supercritical flows past a square cylinder with rounded corners", Phys. Fluids, 29(8), 085110. https://doi.org/10.1063/1.4998739.
  7. Chiarini, A. and Quadrio, M. (2021), "The turbulent flow over the BARC rectangular cylinder: A DNS Study. Flow", Flow Turbulence Combustion, 107, 875-899. https://doi.org/10.1007/s10494-021-00254-1.
  8. Chiarini, A., Quadrio, M. and Auteri, F. (2021), "Linear stability of the steady flow past rectangular cylinders", J. Fluid Mech., 929, A36. https://doi.org/10.1017/jfm.2021.819.
  9. Cimarelli, A., Franciolini, M. and Crivellini, A. (2020), "Numerical experiments in separating and reattaching flows", Phys. Fluids, 32(9), 095119. https://doi.org/10.1063/5.0019049.
  10. Cimarelli, A., Leonforte, A. and Angeli, D. (2018a), "On the structure of the self-sustaining cycle in separating and reattaching flows", J. Fluid Mech. 857, 907-936. https://doi.org/10.1017/jfm.2018.772.
  11. Cimarelli, A., Leonforte, A., De Angelis, E., Crivellini, A. and Angeli, D. (2019), "On negative turbulence production phenomena in the shear layer of separating and reattaching flows.", Phys. Lett. A, 383(10), 1019-1026. https://doi.org/10.1016/j.physleta.2018.12.026.
  12. Cimarelli, A., Leonforte, L. and Angeli, D. (2018b), "Direct numerical simulation of the flow around arectangular cylinder at a moderately high reynolds number", J. Wind Eng. Ind. Aerod., 174, 39-495. https://doi.org/10.1016/j.jweia.2017.12.020.
  13. Hourigan, K., Mills, R., Thompson, M.C., Sheridan, J., Dilin, P. and Welsh, M.C. (1993), "Base pressure coefficients for flows around rectangular plates", J. Wind Eng. Ind. Aerody., 49(1), 311-318. https://doi.org/10.1016/0167-6105(93)90026-K.
  14. Hourigan, K., Thompson, M.C. and Tan, B.T. (2001), "Selfsustained oscillations in flows around long blunt plates", J. Fluids Struct., 15, 387-398. https://doi.org/10.1006/jfls.2000.0352.
  15. Jeong, J. and Hussain, F. (1995), "On the identification of a vortex", J. Fluid Mech., 285, 69-94. https://doi.org/10.1017/S0022112095000462.
  16. Kiya, M. and Sasaki, K. (1983), "Structure of a turbulents paration bubble", J. Fluid Mech. 137, 83-113. https://doi.org/10.1017/S002211208300230X.
  17. Lamballais, E., Silvestrini, J. and Laizet, S. (2008), "Direct numerical simulation of a separation bubble on a rounded finitewidth leading edge", Int. J. Heat Fluid Flow, 29, 612-625. https://doi.org/10.1016/j.ijheatfluidflow.2008.03.006.
  18. Lamballais, E., Silvestrini, J. and Laizet, S. (2010), "Direct numerical simulation of flow separation behind a rounded leading edge: Study of curvature effects", Int. J. Heat Fluid Flow, 31, 295-306. https://doi.org/10.1016/j.ijheatfluidflow.2009.12.007.
  19. Luchini, P. (1991), "A deferred correction multigrid algorithm based on a new smoother for the Navier-Stokes equations", J. Comp. Phys., 92, 349-368. https://doi.org/10.1016/0021-9991(91)90214-6.
  20. Luchini, P. (2013), "Linearized no-slip boundary conditions at a rough surface", J. Fluid Mech., 737, 349-367. https://doi.org/10.1017/jfm.2013.574.
  21. Luchini, P. (2016), "Immersed-boundary simulation of turbulent flow past a sinusoidally undulated river bottom", Eur. J. Mech. B / Fluids, 55, 340-347. https://doi.org/10.1016/j.euromechflu.2015.08.007.
  22. Mannini, C., Marra, A.M., Pigolotti, L. and Bartoli, G. (2017), "The effects of free-stream turbulence and angle of attack on the aerodynamics of a cylinder with rectangular 5:1 cross section", J. Wind Eng. Ind. Aerody., 161, 42-58. https://doi.org/10.1016/j.jweia.2016.12.001.
  23. Mariotti, A., Salvetti, M.V., Shoeibi Omrani, P. and Witteveen, J. A.S. (2016), "Stochastic analysis of the impact of freestream conditions on the aerodynamics of a rectangular 5:1 cylinder", Comp. Fluids, 136, 170-192. https://doi.org/10.1016/j.compfluid.2016.06.008.
  24. Mariotti, A., Siconolfi, L. and Salvetti, M.V. (2017), "Stochastic sensitivity analysis of large-eddy simulation predictions of the flow around a 5:1 rectangular cylinder", Eur. J. Mech. B / Fluids, 62, 149-165. https://doi.org/10.1016/j.euromechflu.2016.12.008.
  25. Mills, R., Sheridan, J. and Hourigan, K. (2002), "Response of base suction and vortex shedding from rectangular prisms to transverse forcing", J. Fluid Mech., 461, 25-49. https://doi.org/10.1017/S0022112002008534.
  26. Mills, R., Sheridan, J. and Hourigan, K. (2003), "Particle image velocimetry and visualization of natural and forced flow around rectangular cylinders", J. Fluid Mech., 478, 299-323. https://doi.org/10.1017/S0022112002003439.
  27. Moffat, H.K. (1964), "Viscous and resistive eddies near a sharp corner", J. Fluid Mech., 18(1), 1-18. https://doi.org/10.1017/S0022112064000015.
  28. Moore, D.M., Letchford, C.W. and Amitay, M. (2019), "Energetic scales in a bluff body shear layer", J. Fluid Mech., 875, 543-575. https://doi.org/10.1017/jfm.2019.480.
  29. Nakamura, Y. and Nakashima, M. (1986), "Vortex excitation of prisms with elongated rectangular, H and ⊢ cross-sections", J. Fluid Mech., 163, 149-169. https://doi.org/10.1017/S0022112086002252.
  30. Okajima, A. (1982), "Strouhal numbers of rectangular cylinders", J. Fluid Mech., 123, 379-398. https://doi.org/10.1017/S0022112082003115.
  31. Ozono, S., Ohya, Y., Nakamura, Y. and Nakayama, R. (1992), "Stepwise increase in the Strouhal number for flows around flat plates", Int. J. Numer. Methods Fluids, 15(9), 1025-1036. https://doi.org/10.1002/fld.1650150908.
  32. Park, D. and Yang, K.S. (2016), "Flow instabilities in the wake of a rounded square cylinder", J. Fluid Mech., 793, 915-932. https://doi.org/10.1017/jfm.2016.156.
  33. Patruno, L., Ricci, M., De Miranda, S. and Ubertini, F. (2016), "Numerical simulation of a 5:1rectangular cylinder at non-null angles of attack", J. Wind Eng. Ind. Aerod., 151, 146-157. https://doi.org/10.1016/j.jweia.2016.01.008.
  34. Pope, S.B. (2000), Turbulent Flows, Cambridge University Press, Cambridge.
  35. Ricci, M., Patruno, L., De Miranda, S. and Ubertini, F. (2017), "Flow field around a 5:1 rectangular cylinder using LES: Influence of inflow turbulence conditions, spanwise domain size and their interaction", Comp. Fluids, 149, 181-193. https://doi.org/10.1016/j.compfluid.2017.03.010.
  36. Rocchio, B., Mariotti, A. and Salvetti, M.V. (2020), "Flow around a 5:1 rectangular cylinder: Effects of upstream-edge rounding", J. Wind Eng. Ind. Aerod., 204, 104237. https://doi.org/10.1016/j.jweia.2020.104237.
  37. Simpson, R.L. (1989), "Turbulent boundary-layer separation", Annu. Rev. Fluid Mech., 21(1), 205-232. https://doi.org/10.1146/annurev.fl.21.010189.001225.
  38. Sohankar, A., Norberg, C. and Davidson, L. (1998), "Low- Reynolds-number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition", Int. J. Numer. Methods Fluids, 26(1), 39-56. https://doi.org/10.1002/(SICI)1097-0363(19980115)26:1%3C39::AID-FLD623%3E3.0.CO;2-P.
  39. Tan, B.T., Thompson, M.C. and Hourigan, K. (1998), "Simulated flow around long rectangular plates under cross flow perturbations", Int. J. Fluid Dyn., 2.
  40. Weller H.G., Tabor, G., Jasak, H. and Fureby, C. (1998), "A tensorial approach to computational continuum mechanics using object-oriented techniques", Comput. Phys., 12(6), 620-631. https://doi.org/10.1063/1.168744.