Acknowledgement
Computing time has been provided by the Italian supercomputing center CINECA under the ISCRA C projects TAWBF and AGKEbump.
References
- Anzai, Y., Fukagata, K., Meliga, P., Boujo, E. and Gallaire, F. (2017), "Numerical simulation and sensitivity analysis of a low- Reynolds-number flow around a square cylinder controlled using plasma actuators", Phys. Rev. Fluids, 2(4), 043901. https://doi.org/10.1103/PhysRevFluids.2.043901.
- Auteri, F., Parolini, N. and Quartapelle, L. (2003), "Essential imposition of Neumann condition in Galerkin-Legendre elliptic solvers", J. Comp. Phys., 185(2), 427-444. https://doi.org/10.1016/S0021-9991(02)00064-5.
- Bruno, L., Coste, N. and Fransos, D. (2012), "Simulated flow around a rectangular 5:1 cylinder: Spanwise discretisation effects and emerging flow features", J. Wind Eng. Ind. Aerod., 104-106, 203-215. https://doi.org/10.1016/j.jweia.2012.03.018.
- Bruno, L., Salvetti, M.V. and Ricciardelli, F. (2014), "Benchmark on the aerodynamics of a rectangular 5:1 cylinder: An overview after the first four years of activity", J. Wind Eng. Ind. Aerod., 126, 87-106. https://doi.org/10.1016/j.jweia.2014.01.005.
- Burda, P., Novotny, J. and Sistek, J. (2012), "Analytical solution of Stokes flow near corners and applications to numerical solution of Navier-Stokes equations with high precision", Proceedings of the Conference Applications of Mathematics, Prague, Czech Republic
- Cao, Y. and Tamura, T. (2017), "Supercritical flows past a square cylinder with rounded corners", Phys. Fluids, 29(8), 085110. https://doi.org/10.1063/1.4998739.
- Chiarini, A. and Quadrio, M. (2021), "The turbulent flow over the BARC rectangular cylinder: A DNS Study. Flow", Flow Turbulence Combustion, 107, 875-899. https://doi.org/10.1007/s10494-021-00254-1.
- Chiarini, A., Quadrio, M. and Auteri, F. (2021), "Linear stability of the steady flow past rectangular cylinders", J. Fluid Mech., 929, A36. https://doi.org/10.1017/jfm.2021.819.
- Cimarelli, A., Franciolini, M. and Crivellini, A. (2020), "Numerical experiments in separating and reattaching flows", Phys. Fluids, 32(9), 095119. https://doi.org/10.1063/5.0019049.
- Cimarelli, A., Leonforte, A. and Angeli, D. (2018a), "On the structure of the self-sustaining cycle in separating and reattaching flows", J. Fluid Mech. 857, 907-936. https://doi.org/10.1017/jfm.2018.772.
- Cimarelli, A., Leonforte, A., De Angelis, E., Crivellini, A. and Angeli, D. (2019), "On negative turbulence production phenomena in the shear layer of separating and reattaching flows.", Phys. Lett. A, 383(10), 1019-1026. https://doi.org/10.1016/j.physleta.2018.12.026.
- Cimarelli, A., Leonforte, L. and Angeli, D. (2018b), "Direct numerical simulation of the flow around arectangular cylinder at a moderately high reynolds number", J. Wind Eng. Ind. Aerod., 174, 39-495. https://doi.org/10.1016/j.jweia.2017.12.020.
- Hourigan, K., Mills, R., Thompson, M.C., Sheridan, J., Dilin, P. and Welsh, M.C. (1993), "Base pressure coefficients for flows around rectangular plates", J. Wind Eng. Ind. Aerody., 49(1), 311-318. https://doi.org/10.1016/0167-6105(93)90026-K.
- Hourigan, K., Thompson, M.C. and Tan, B.T. (2001), "Selfsustained oscillations in flows around long blunt plates", J. Fluids Struct., 15, 387-398. https://doi.org/10.1006/jfls.2000.0352.
- Jeong, J. and Hussain, F. (1995), "On the identification of a vortex", J. Fluid Mech., 285, 69-94. https://doi.org/10.1017/S0022112095000462.
- Kiya, M. and Sasaki, K. (1983), "Structure of a turbulents paration bubble", J. Fluid Mech. 137, 83-113. https://doi.org/10.1017/S002211208300230X.
- Lamballais, E., Silvestrini, J. and Laizet, S. (2008), "Direct numerical simulation of a separation bubble on a rounded finitewidth leading edge", Int. J. Heat Fluid Flow, 29, 612-625. https://doi.org/10.1016/j.ijheatfluidflow.2008.03.006.
- Lamballais, E., Silvestrini, J. and Laizet, S. (2010), "Direct numerical simulation of flow separation behind a rounded leading edge: Study of curvature effects", Int. J. Heat Fluid Flow, 31, 295-306. https://doi.org/10.1016/j.ijheatfluidflow.2009.12.007.
- Luchini, P. (1991), "A deferred correction multigrid algorithm based on a new smoother for the Navier-Stokes equations", J. Comp. Phys., 92, 349-368. https://doi.org/10.1016/0021-9991(91)90214-6.
- Luchini, P. (2013), "Linearized no-slip boundary conditions at a rough surface", J. Fluid Mech., 737, 349-367. https://doi.org/10.1017/jfm.2013.574.
- Luchini, P. (2016), "Immersed-boundary simulation of turbulent flow past a sinusoidally undulated river bottom", Eur. J. Mech. B / Fluids, 55, 340-347. https://doi.org/10.1016/j.euromechflu.2015.08.007.
- Mannini, C., Marra, A.M., Pigolotti, L. and Bartoli, G. (2017), "The effects of free-stream turbulence and angle of attack on the aerodynamics of a cylinder with rectangular 5:1 cross section", J. Wind Eng. Ind. Aerody., 161, 42-58. https://doi.org/10.1016/j.jweia.2016.12.001.
- Mariotti, A., Salvetti, M.V., Shoeibi Omrani, P. and Witteveen, J. A.S. (2016), "Stochastic analysis of the impact of freestream conditions on the aerodynamics of a rectangular 5:1 cylinder", Comp. Fluids, 136, 170-192. https://doi.org/10.1016/j.compfluid.2016.06.008.
- Mariotti, A., Siconolfi, L. and Salvetti, M.V. (2017), "Stochastic sensitivity analysis of large-eddy simulation predictions of the flow around a 5:1 rectangular cylinder", Eur. J. Mech. B / Fluids, 62, 149-165. https://doi.org/10.1016/j.euromechflu.2016.12.008.
- Mills, R., Sheridan, J. and Hourigan, K. (2002), "Response of base suction and vortex shedding from rectangular prisms to transverse forcing", J. Fluid Mech., 461, 25-49. https://doi.org/10.1017/S0022112002008534.
- Mills, R., Sheridan, J. and Hourigan, K. (2003), "Particle image velocimetry and visualization of natural and forced flow around rectangular cylinders", J. Fluid Mech., 478, 299-323. https://doi.org/10.1017/S0022112002003439.
- Moffat, H.K. (1964), "Viscous and resistive eddies near a sharp corner", J. Fluid Mech., 18(1), 1-18. https://doi.org/10.1017/S0022112064000015.
- Moore, D.M., Letchford, C.W. and Amitay, M. (2019), "Energetic scales in a bluff body shear layer", J. Fluid Mech., 875, 543-575. https://doi.org/10.1017/jfm.2019.480.
- Nakamura, Y. and Nakashima, M. (1986), "Vortex excitation of prisms with elongated rectangular, H and ⊢ cross-sections", J. Fluid Mech., 163, 149-169. https://doi.org/10.1017/S0022112086002252.
- Okajima, A. (1982), "Strouhal numbers of rectangular cylinders", J. Fluid Mech., 123, 379-398. https://doi.org/10.1017/S0022112082003115.
- Ozono, S., Ohya, Y., Nakamura, Y. and Nakayama, R. (1992), "Stepwise increase in the Strouhal number for flows around flat plates", Int. J. Numer. Methods Fluids, 15(9), 1025-1036. https://doi.org/10.1002/fld.1650150908.
- Park, D. and Yang, K.S. (2016), "Flow instabilities in the wake of a rounded square cylinder", J. Fluid Mech., 793, 915-932. https://doi.org/10.1017/jfm.2016.156.
- Patruno, L., Ricci, M., De Miranda, S. and Ubertini, F. (2016), "Numerical simulation of a 5:1rectangular cylinder at non-null angles of attack", J. Wind Eng. Ind. Aerod., 151, 146-157. https://doi.org/10.1016/j.jweia.2016.01.008.
- Pope, S.B. (2000), Turbulent Flows, Cambridge University Press, Cambridge.
- Ricci, M., Patruno, L., De Miranda, S. and Ubertini, F. (2017), "Flow field around a 5:1 rectangular cylinder using LES: Influence of inflow turbulence conditions, spanwise domain size and their interaction", Comp. Fluids, 149, 181-193. https://doi.org/10.1016/j.compfluid.2017.03.010.
- Rocchio, B., Mariotti, A. and Salvetti, M.V. (2020), "Flow around a 5:1 rectangular cylinder: Effects of upstream-edge rounding", J. Wind Eng. Ind. Aerod., 204, 104237. https://doi.org/10.1016/j.jweia.2020.104237.
- Simpson, R.L. (1989), "Turbulent boundary-layer separation", Annu. Rev. Fluid Mech., 21(1), 205-232. https://doi.org/10.1146/annurev.fl.21.010189.001225.
- Sohankar, A., Norberg, C. and Davidson, L. (1998), "Low- Reynolds-number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition", Int. J. Numer. Methods Fluids, 26(1), 39-56. https://doi.org/10.1002/(SICI)1097-0363(19980115)26:1%3C39::AID-FLD623%3E3.0.CO;2-P.
- Tan, B.T., Thompson, M.C. and Hourigan, K. (1998), "Simulated flow around long rectangular plates under cross flow perturbations", Int. J. Fluid Dyn., 2.
- Weller H.G., Tabor, G., Jasak, H. and Fureby, C. (1998), "A tensorial approach to computational continuum mechanics using object-oriented techniques", Comput. Phys., 12(6), 620-631. https://doi.org/10.1063/1.168744.