Acknowledgement
We thank two anonymous reviewers for their thoughtful comments and suggestions that have improved the overall quality of the manuscript.
References
- Abraham C, Cornillon PA, Matzner-Lober E, and Molinari N (2003). Unsupervised curve clustering using B-splines. Scandinavian Journal of Statistics, 30, 581-595. https://doi.org/10.1111/1467-9469.00350
- Anderson KG, Ranbaut A, Lipkin WI, Holmes EC, and Garry RF (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26, 450-452. https://doi.org/10.1038/s41591-020-0820-9
- Boschi T, Di Iorio J, Testa L, Cremona MA, and Chiaromonte F (2021). Functional data analysis characterizes the shapes of the first COVID-19 epidemic wave in Italy. Scientific Reports, 11, 17054. https://doi.org/10.1038/s41598-021-95866-y
- Borveyron C, Celeus G, Murphy TB, and Raftery AE (2019). Model-Based Clustering and Classification for Data Science: With Applications in R, Cambridge University Press, Cambridge, UK.
- Baladandayuthapani V, Mallick BK, Hong MY, Lupton JR, Turner ND, and Carroll RJ (2008). Bayesian Hierarchical Spatially Correlated Functional Data Analysis with Application to Colon Carcinogenesis. Biometrics, 64, 64-73. https://doi.org/10.1111/j.1541-0420.2007.00846.x
- Burns DM, Houpt JW, Townsend JT, and Endres MJ (2013). Functional principal component analysis of workload capacity functions. Behavior Research Methods, 45, 1048-1057. https://doi.org/10.3758/s13428-013-0333-2
- Carroll C, Gajardo A, and Chen Y, et al. (2020) fdapace: Functional Data Analysis and Empirical Dynamics, R package version 0.5.4. https://CRAN.R-project.org/package=fdapace
- Carroll C, Bhattacharjee S, and Chen Y, et al. (2020). Time dynamics of COVID-19. Scientific Reports, 10, 21040. https://doi.org/10.1038/s41598-020-77709-4
- Chen WC and Maitra R (2019) EMCluster: EM algorithm for model-based clustering of finite mixture Gaussian distribution, R Package. http://cran.r-project.org/package=EMCluster
- Chen J, Yan J, and Zhang P (2020). Clustering US states by time series of COVID-19 new case counts with non-negative matrix factorization. arXiv:2011.14412
- Crawford L, Monod A, Chen AX, Mukherjee S, and Rabadan R (2020). Predicting clinical outcomes in glioblastoma: An application of topological and functional data analysis. Journal of the American Statistical Association, 115, 1139-1150. https://doi.org/10.1080/01621459.2019.1671198
- Dempster AP, Laird NM, and Rubin DB (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39, 1-22. https://doi.org/10.2307/2347807
- Fan J and Gijbels I (1996). Local Polynomial Modelling and Its Applications, Chapman and Hall, London, UK.
- Floriello D and Vitelli V (2017). Sparse clustering of functional data. Journal of Multivariate Analysis, 154, 1-18. https://doi.org/10.1016/j.jmva.2016.10.008
- Garcia-Escudero LA and Gordaliza A (2005). A proposal for robust curve clustering. Journal of Classification, 22, 185-201. https://doi.org/10.1007/s00357-005-0013-8
- Handcock MS, Raftery AE, and Tantrum J (2007). Model-based clustering for social networks (with discussion). Journal of the Royal Statistical Society. Series A (Statistics in Society), 170, 301-354. https://doi.org/10.1111/j.1467-985X.2007.00471.x
- He G, Muller H-G, and Wang J-L (2004). Methods of canonical analysis for functional data. Journal of Statistical Planning and Inference, 122, 141-159. https://doi.org/10.1016/j.jspi.2003.06.003
- Hyndman RJ and Ullah S (2007). Robust forecasting of mortality and fertility rates: A functional data approach. Computational Statistics & Data Analysis, 51, 4942-4956. https://doi.org/10.1016/j.csda.2006.07.028
- James GM and Sugar CA (2003). Clustering for sparsely sampled functional data. Journal of the American Statistical Association, 8, 397-408. https://doi.org/10.1198/016214503000189
- Lee G and Scott C (2012). EM algorithms for multivariate Gaussian mixture models with truncated and censored data. Computational Statistics & Data Analysis, 56, 2816-2829. https://doi.org/10.1016/j.csda.2012.03.003
- Leng X and Muller H-G (2006). Classification using functional data analysis for temporal gene expression data. Biostatistics, 22, 68-76.
- Li Y and Hsing T (2010). Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data. The Annals of Statistics, 38, 3321-3351. https://doi.org/10.1214/10-AOS813
- Li Y, Wang N, and Carroll RJ (2013). Selecting the number of principal components in functional data. Journal of the American Statistical Association, 108, 1284-1294. https://doi.org/10.1080/01621459.2013.788980
- McLachlan GJ and Peel D (2000). Finite Mixture Models, New York, Wiley-Interscience.
- Newman MEJ (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America, 103, 8577-8582. https://doi.org/10.1073/pnas.0601602103
- Ouyang G, Dey DK, and Zhang P (2019). Clique-based method for social network clustering. Journal of Classification, 37, 254-274. https://doi.org/10.1007/s00357-019-9310-5
- Petersen A and Muller H-G (2016). Functional data analysis for density functions by transformation to a Hilbert space. The Annals of Statistics, 44, 183-218. https://doi.org/10.1214/15-AOS1363
- Rajgor DD, Lee MH, Archuleta S, Bagdasarian N, and Quek SC (2020). The many estimates of the COVID-19 case fatality rate. The Lancet Infectious Diseases, 20, 776-777. https://doi.org/10.1016/S1473-3099(20)30244-9
- Rahman A and Jiang D (2021). Regional and temporal patterns of influenza: Application of functional data analysis. Infectious Disease Modelling, 6, 1061-1072. https://doi.org/10.1016/j.idm.2021.08.006
- Ramsay JO (1982). When the data are functions. Psychometrika, 47, 379-396. https://doi.org/10.1007/BF02293704
- Ramsay JO and Dalzell CJ (1991). Some tools for functional data analysis. Journal of the Royal Statistical Society. Series B (Methodological), 53, 539-572. https://doi.org/10.1111/j.2517-6161.1991.tb01844.x
- Ramsay JO and Silverman BW, Applied Functional Data Analysis: Methods and Case Studies, Springer-Verlag, New York.
- Ramsay JO and Silverman BW (2005). Functional Data Analysis, Springer-Verlag, New York.
- Ramsay JO, Hooker G, and Graves S (2009). Functional Data Analysis with R and MATLAB, Springer-Verlag New York, NY.
- Ramsay JO, Graves S, and Hooker SG (2020) fda: Functional Data Analysis, R package version 5.1.4. https://CRAN.R-project.org/package=fda
- Shen M, Tan H, Zhou S, Smith GN, Walker MC, and Wen SW (2017). Trajectory of blood pressure change during pregnancy and the role of pre-gravid blood pressure: A functional data analysis approach. Scientific Reports, 7, 6227. https://doi.org/10.1038/s41598-017-06606-0
- Shin H and Lee S (2015). Canonical correlation analysis for irregularly and sparsely observed functional data. Journal of Multivariate Analysis, 134, 1-18. https://doi.org/10.1016/j.jmva.2014.10.001
- Tang B, Xia F, and Tang S, et al. (2020). The effectiveness of quarantine and isolation determine the trend of the COVID-19 epidemic in the final phase of the current outbreak in China. International Journal of Infectious Diseases, 95, 288-293. https://doi.org/10.1016/j.ijid.2020.03.018
- Tang C, Wang T, and Zhang P (2021). Functional data analysis: An application to COVID-19 data in the United States. Quantitative Biology.
- The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team (2020). Vital Surveillances: The Epidemiological Characteristics of an Outbreak of 2019 novel coronavirus diseases (COVID-19)-China. China CDC Weekly, 2, 113-122. https://doi.org/10.46234/ccdcw2020.032
- Ullah S and Finch CF (2013). Applications of functional data analysis: A systematic review. BMC Medical Research Methodology, 13.
- World Health Organization (2020). Coronavirus disease 2019 (COVID-19): situation report, 114, https://apps.who.int/iris/handle/10665/332089
- Yang W, Muller H-G, and Stadtmuller U (2011). Functional singular component analysis. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 73, 303-324. https://doi.org/10.1111/j.1467-9868.2010.00769.x
- Yao F, Muller H-G, and Wang J-L (2005). Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association, 100, 577-590. https://doi.org/10.1198/016214504000001745
- Zhu H, Wei L, and Niu P (2020). The novel coronavirus outbreak in Wuhan, China. Global Health Research and Policy, 5.