DOI QR코드

DOI QR Code

Bond-slip behavior of reactive powder concrete-filled square steel tube

  • Qiuwei, Wang (College of Civil Engineering, Xi'an University of Architecture & Technology) ;
  • Lu, Wang (College of Civil Engineering, Xi'an University of Architecture & Technology) ;
  • Hang, Zhao (College of Civil Engineering, Xi'an University of Architecture & Technology)
  • Received : 2021.04.29
  • Accepted : 2022.12.13
  • Published : 2022.12.25

Abstract

This paper presented an experimental study of the bond-slip behavior of reactive powder concrete (RPC)-filled square steel tube. A total of 18 short composite specimens were designed forstatic push-out test, and information on their failure patterns, load-slip behavior and bond strength was presented. The effects of width-to-thickness ratio, height-to-width ratio and the compressive strength of RPC on the bond behavior were discussed. The experimental results show that:(1) the push-out specimens remain intact and no visible local buckling appears on the steel tube, and the interfacial scratches are even more pronounced at the internal steel tube of loading end; (2) the bond load-slip curves with different width-to-thickness ratios can be divided into two types, and the main difference is whether the curves have a drop in load with increasing slip; (3) the bond strength decreases with the increase of the width-to-thickness ratio and height-width ratio, while the influence of RPC strength is not consistent; (4) the slippage has no definite correlation with bond strength and the influence of designed parameters on slippage is not evident. On the basis of the above analysis, the expressions of interface friction stress and mechanical interaction stress are determined by neglecting chemical adhesive force, and the calculation model of bond strength for RPC filled in square steel tube specimens is proposed. The theoretical results agree well with the experimental data.

Keywords

Acknowledgement

The research described in this article was supported by the National Natural Science Foundation of China (Grant No.51878543 and No.51878540). Those supports are sincerely appreciated.

References

  1. Ahmad, S., Hakeem, I. and Azad, A.K. (2015), "Effect of curing, fibre content and exposures on compressive strength and elasticity of UHPC", Adv. Cement Res., 27(4), 233-239. https://doi.org/10.1680/adcr.13.00090
  2. Aly, T., Elchalakani, M., Thayalan, P. and Patnaikuni, I. (2010). Incremental collapse threshold for pushout resistance of circular concrete filled steel tubular columns", J. Constr. Steel Res., 66(1), 11-18. https://doi.org/10.1016/j.jcsr.2009.08.002
  3. Chen, Y., Feng, R., Shao, Y.B., Zhang, X.T. (2017), "Bond-slip behaviour of concrete-filled stainless steel circular hollow section tubes", J. Constr. Steel Res., 130, 248-263.https://doi.org/10.1016/j.jcsr.2016.12.012.
  4. Chen, Z.P., Liu, X. and Zhou, W.X. (2018), "Residual bond behavior of high strength concrete-filled square steel tube after elevated temperatures", Steel Compos. Struct., 27(4), 509-523. http://dx.doi.org/10.12989/scs.2018.27.4.509.
  5. Dong, H.G, Chen, X.P., Cao, W.L. and Zhao, Y.Z. (2020). "Bond behavior of high-strength recycled aggregate concrete-filled large square steel tubes with different connectors", Eng. Struct., 211. https://doi.org/10.1016/j.engstruct.2020.110392.
  6. Erdogdu, S., Kandil, U. and Nayir, S. (2019), "Effects of cement dosage and steel fiber ratio on the mechanical properties of reactive powder concrete", Adv. Concrete Constr., 8(2), 139-144. http://dx.doi.org/10.12989/acc.2019.8.2.139.
  7. GB/T 31387 (2015), Reactive Powder Concrete, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China; Beijing, China.
  8. Hua, C.Y. (2007), Experimental and Theoretical Study on the Bond Properties at the Interface of Concrete-filled Square Steel Tubes, Ph. D. Dissertation, Xi'an University of Architecture and Technology.
  9. Huang, W.J., Sheng, Y., Zhang, Z.B., Yao, P.Y. and Chen, H. (2017). "Experimental study on bond strength of interface between steel fiber reinforced reactive powder concrete and steel tube", J. Build. Struct., 38(SI), 502-507.
  10. Le, Phong T. Le, An H. and Lai, B.L. (2020), "Test and simulation of circular steel tube confined concrete (STCC) columns made of plain UHPC", Struct. Eng. Mech. 75(6), 643-657. http://dx.doi.org/10.12989/sem.2020.75.6.643.
  11. Li, H., Liu, Y.J. and Zhang, N. (2020), "Non-linear distributions of bond-slip behavior in concrete-filled steel tubes by the acoustic emission technique", Struct., 28, 2311-2320. https://doi.org/10.1016/j.istruc.2020.10.062
  12. Loke, C.K., Gunawardena, Y.K.R., Aslani, F. and Uy, B. (2019), "Push-out resistance of concrete-filled spiral-welded mild-steel and stainless-steel tubes", Steel Compos. Struct., 33(6), 823-836. http://dx.doi.org/10.12989/scs.2019.33.6.823
  13. Lyu, W.Q. and Han, L.H. (2019), "Investigation on bond strength between recycled aggregate concrete (RAC) and steel tube in RAC-filled steel tubes", J. Constr. Steel Res., 155, 438-459. https://doi.org/10.1016/j.jcsr.2018.12.028.
  14. Petrus, C., Abdul Hamid, H., Ibrahim, A. and Nyuin, J.D. (2011), "Bond strength in concrete filled built-up steel tube columns with tab stiffeners", Canadian J. Civil Eng., 38(6), 627-637. https://doi.org/10.1139/L11-030.
  15. Poorhosein, R. and Nematzadeh, M. (2018), "Mechanical behavior of hybrid steel-PVA fibers reinforced reactive powder concrete", Compu. Concrete, 21(2), 167-179. https://doi.org/10.12989/CAC.2018.21.2.167
  16. Qu, X.S., Chen, D.A., Nethercot, G. and Leroy, T. (2013), "Load-reversed push-out tests on rectangular CFST columns", J. Constr. Steel Res., 81, 35-43. https://doi.org/10.1016/j.jcsr.2012.11.003.
  17. Qu, X.S., Chen, Z.H., Nethercot, D.A., Gardner, L. and Theofanous, M. (2015), "Push-out tests and bond strength of rectangular CFST columns", Steel Compos. Struct., 19(1), 21-41. https://doi.org/10.12989/scs.2015.19.1.021.
  18. Richard, P. and Cheyrezy, M. (1995), "Composition of reactive powder concretes", Cement and Concrete Res., 25(7), 1501-1511. https://doi.org/10.1016/0008-8846(95)00144-2
  19. Roeder, C.W., Cameron B. and Brown, C.B. (1999), "Composite action in concrete filled tubes"," J. Struct. Eng., 125(5), 477-484. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(477).
  20. Szadkowska, M. and Szmigiera, E. (2017), "Bond between steel and self-compacting concrete in composite tube columns", Archi. Civil Eng., 63(2). https://doi.org/10.1515/ace-2017-0021.
  21. Tao, Z, Song, T.Y., Uy, B. and Han, L.H. (2016), "Bong behavior in concrete-filled steel tubes", J. Constr. Steel Res., 120, 81-93. https://doi.org/10.1016/j.jcsr.2015.12.030.
  22. Wang, B., Wu, M. Z., Shi, Q.X. and Cai, W.Z (2022), "Seismic performance of flanged RC walls under biaxial cyclic loading", J. Build. Eng., 105632, 2-49. https://doi.org/10.1016/j.jobe.2022.105632.
  23. Wang, L., Chen, H.T., Zhong, J.T., Chen, H.R., Xuan, W., Mi, S., and Yang, H.Y. (2018), "Study on the bond-Slip performance of CFSSTs based on push-out tests", Adv. Mater. Sci. Eng., 2018. https://doi.org/10.1155/2018/2959827.
  24. Wang, Q.W., Liu, L. and Shi, Q.X. (2020), "A calculation method of the interface bond strength of reactive powder concrete filled in steel tubes", Eng. Mechanics, 37(4), 41-50.
  25. Xue, L.H. and Cai, S.H. (1996), "Bond strength at interface of concrete-filled steel tube columns (a)", Build. Sci., 03, 22-28.
  26. Yigiter, H., Aydin, S. and Yardimci, M.Y. (2012), "Mechanical performance of low cement reactive powder concrete (LCRPC)", Compos. Part B-Eng., 43(8), 2907-2914. https://doi.org/10.1016/j.compositesb.2012.07.042
  27. Yin, X.W. and Lv, X.L. (2010), "Study on push-out test and bond stress-slip relationship of circular concrete filled steel tube", Steel Compos. Struct., 10(4), 317-329. http://dx.doi.org/10.12989/scs.2010.10.4.317.