Acknowledgement
Institute of Information & communications Technology Planning & Evaluation (IITP) funded by MSIT (No. 2019-0-00001, Development of Holo-TV Core Technologies for Hologram Media Services); Technology Innovation Program funded by the MOTIE, Korea (P20010672).
References
- F. Fischnaller, A. Guidazzoli, S. Imboden, D. D. Luca, M. C. Liguori, A. Russo, R. Cosentino, and M. A. De Lucia, "Sarcophagus of the Spouses installation intersection across archaeology, 3D video mapping, holographic techniques combined with immersive narrative environments and scenography," in Proc. Digital Heritage (Granada, Spain, Sep. 2015), pp. 365-368.
- R. Haussler, Y. Gritsai, E. Zschau, R. Missbach, H. Sahm, M. Stock, and H. Stolle, "Large real-time holographic 3D displays: enabling components and results," Appl. Opt. 56, F45-F52 (2017). https://doi.org/10.1364/AO.56.000F45
- N. Padmanaban, Y. Peng, and G. Wetzstein, "Holographic near-eye displays based on overlap-add stereograms," ACM Trans. Graph. 38, 214 (2019).
- H. Byeon, T. Go, and S. J. Lee, "Deep learning-based digital in-line holographic microscopy for high resolution with extended field of view," Opt. Laser. Technol. 113, 77-86 (2019).
- V. R. Besaga, N. C. Gerhardt, and M. R. Hofmann, "Digital holography for spatially resolved analysis of the semiconductor optical response," Appl. Opt. 60, A15-A20 (2021). https://doi.org/10.1364/ao.402488
- J. Jang, J. W. Jeon, J. S. Kim, and K.-N. Joo, "Efficient and exact extraction of the object wave in off-axis digital holography," Curr. Opt. Photonics 2, 547-553 (2018). https://doi.org/10.3807/COPP.2018.2.6.547
- S. H. Jeon and S. K. Gil, "Secret key sharing cryptosystem using optical phase-shifting digital holography," Curr. Opt. Photonics 3, 119-127 (2019). https://doi.org/10.3807/COPP.2019.3.2.119
- J. Christmas and N. Collings, "Realizing automotive holographic head up displays," SID Symp. Dig. Tech. 47, 1017-1020 (2016).
- B. Mullins, P. Greenhalgh, and J. Christmas, "The holographic future of head up displays," SID Symp. Dig. Tech. 48, 886-889 (2017).
- W. Wang, X. Zhu, K. Chan, and P. Tsang, "Digital holographic system for automotive augmented reality head-up-display," in Proc. IEEE 27th International Symposium on Industrial Electronics-ISIE (Cairns, Australia, Jun. 2018), pp. 1327-1330.
- C.-Y. Shen, Y. Cheng, S.-H. Huang, and Y.-P. Huang, "Image enhancement of 3D holographic projection using multi-constraints angular spectrum algorithm," SID Symp. Dig. Tech. 50, 1576-1579 (2019).
- P. Coni, N. Damamme, and J.-L. Bardon, "The future of holographic head-up display," IEEE Consum. Electron. Mag. 8, 68-73 (2019).
- D.-W. Kim, Y.-H. Lee, and Y.-H. Seo, "High-speed computer-generated hologram based on resource optimization for block-based parallel processing," Appl. Opt. 57, 3511-3518 (2018). https://doi.org/10.1364/AO.57.003511
- C. Chen, K. Chang, C. Liu, J. Wang, and Q. Wang, "Fast hologram generation using intermediate angular-spectrum method for high-quality compact on-axis holographic display," Opt. Express 27, 29401-29414 (2019). https://doi.org/10.1364/oe.27.029401
- D. Pi, J. Liu, Y. Han, S. Yu, and N. Xiang, "Acceleration of computer-generated hologram using wavefront-recording plane and look-up table in three-dimensional holographic display," Opt. Express 28, 9833-9841 (2020). https://doi.org/10.1364/oe.385388
- K. Matsushima and S. Nakahara, "Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method," Appl. Opt. 48, H54-H63 (2009). https://doi.org/10.1364/ao.48.000h54
- D. Blinder and T. Shimobaba, "Efficient algorithms for the accurate propagation of extreme-resolution holograms," Opt. Express 27, 29905-29915 (2019). https://doi.org/10.1364/oe.27.029905
- T. Shimobaba, K. Matsushima, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, and T. Ito, "Fast, large-scale hologram calculation in wavelet domain," Opt. Commun. 412, 80-84 (2018). https://doi.org/10.1016/j.optcom.2017.11.066
- T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, "Review of fast calculation techniques for computer-generated holograms with the point-light-source-based model," IEEE Trans. Industr. Inform. 13, 2447-2454 (2017). https://doi.org/10.1109/TII.2017.2669200
- P. W. M. Tsang, T.-C. Poon, and Y. M. Wu, "Review of fast methods for point-based computer-generated holography," Photonics Res. 6, 837-846 (2018). https://doi.org/10.1364/prj.6.000837
- H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, "Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration," Sci. Rep. 8, 1500 (2018). https://doi.org/10.1038/s41598-018-19361-7
- T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, "Fast calculation of computer-generated hologram of line-drawn objects without fft," Opt. Express 28, 15907-15924 (2020). https://doi.org/10.1364/oe.389778
- Z. Wang, G. Lv, Q. Feng, A. Wang, and H. Ming, "Simple and fast calculation algorithm for computer-generated hologram based on integral imaging using look-up table," Opt. Express 26, 13322-13330 (2018). https://doi.org/10.1364/OE.26.013322
- Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," IEEE Trans. Image Process. 13, 600-612 (2004). https://doi.org/10.1109/TIP.2003.819861