Acknowledgement
This study was supported by the Commercialization Promotion Agency for R&D Outcomes (COMPA), "Real-time 3D surface measurement for aspheric and freeform lens," funded by the Ministry of Science and ICT (MSIT).
References
- S. P. Chong, Z. Y. G. Ko, and N. Chen, "Visible light optical coherence microscopy for quantitative imaging of human skin in vivo," Proc. SPIE 11211, 1121109 (2020).
- Z. Xu, C. Yang, P. Zhang, X. Zhang, Z. Cao, Q. Mu, Q. Sun, and L. Xuan, "Visible light high-resolution imaging system for large aperture telescope by liquid crystal adaptive optics with phase diversity technique," Sci. Rep. 7, 10034 (2017). https://doi.org/10.1038/s41598-017-09595-2
- W. J. Mandl, "Visible light imaging sensor with A/D conversion at the pixel," Proc. SPIE 3649, 2-13 (1999). https://doi.org/10.1117/12.347062
- W. Zhao and K. Sakurai, "Seeing elements by visible-light digital camera," Sci. Rep. 7, 45472 (2017). https://doi.org/10.1038/srep45472
- Z. Li, Z. Zhang, Q. Yuan, Y. Qiao, K. Liao, and H. Yu, "Digital image processing in led visible light communications using mobile phone camera," in Proc. 5th International Conference on Network Infrastructure and Digital Content-IEEE IC-NIDC (Beijing, China, Sept. 2016), pp. 239-243.
- G. Satat, B. Heshmat, D. Raviv, and R. Raskar, "All photons imaging through volumetric scattering," Sci. Rep. 6, 33946 (2016). https://doi.org/10.1038/srep33946
- Y. Wang, K. Kumar, L. Wang, and X. Zhang, "Monolithic integration of binary-phase Fresnel zone plate objectives on 2-axis scanning micromirrors for compact microendoscopes," Opt. Express 20, 6657-6668 (2012). https://doi.org/10.1364/OE.20.006657
- N. N. H. Anh, Y.-G. Kim, H.-G. Rhee, and Y.-S. Ghim, "Novel fabrication process for an array of elliptical zone plates by using direct laser lithography," Int. J. Adv. Manuf. Technol. 106, 2629-2634 (2020). https://doi.org/10.1007/s00170-019-04818-4
- N. N. H. Anh, H.-G. Rhee, and Y.-S. Ghim, "Design and lithographic fabrication of elliptical zone plate array with high fill factor," Curr. Opt. Photonics 5, 8-15 (2021). https://doi.org/10.3807/COPP.2021.5.1.008
- K. Zhong, Y. Fu, and G. Jiang, "Improvement in light out-coupling efficiency of OLED by using high fill factor parabola curve microlens arrays," Optik 212, 164604 (2020). https://doi.org/10.1016/j.ijleo.2020.164604
- H. S. Kim, S. Il Moon, D. E. Hwang, K. W. Jeong, C. K. Kim, D.-G. Moon, and C. Hong, "Novel fabrication method of microlens arrays with high OLED outcoupling efficiency," Opt. Laser Technol. 77, 104-110 (2016). https://doi.org/10.1016/j.optlastec.2015.09.006
- K. Huang, Y. Gan, Q. Wang, and X. Jiang, "Enhanced light extraction efficiency of integrated LEDs devices 7with the taper holes microstructures arrays," Opt. Laser Technol. 72, 134-138 (2015). https://doi.org/10.1016/j.optlastec.2015.03.013
- H. Kim and S.-Y. Lee, "Optical phase properties of small numbers of nanoslits and an application for higher-efficiency fresnel zone plates," Curr. Opt. Photonics 3, 285-291 (2019). https://doi.org/10.3807/copp.2019.3.4.285
- M. Grigoriev, R. Fakhrtdinov, D. Irzhak, A. Firsov, A. Firsov, A. Svintsov, A. Erko, and D. Roshchupkin, "Two-dimensional Xray focusing by off-axis grazing incidence phase Fresnel zone plate on the laboratory X-ray source," Opt. Commun. 385, 15-18 (2017). https://doi.org/10.1016/j.optcom.2016.10.024
- M. Ibek, T. Leitner, A. Erko, A. Firsov, and P. Wernet, "Monochromatizing and focussing femtosecond high-order harmonic radiation with one optical element," Rev. Sci. Instrum. 84, 103102 (2013). https://doi.org/10.1063/1.4822114
- M. Brzhezinskaya, A. Firsov, K. Holldack, T. Kachel, R. Mitzner, N. Pontius, J. S. Schmidt, M. Sperling, C. Stamm, A. Fohlisch, and A. Erko, "A novel monochromator for experiments with ultrashort X-ray pulses," J. Synchrotron Radiat. 20, 522-530 (2013). https://doi.org/10.1107/S0909049513008613
- J. Metje, M. Borgwardt, A. Moguilevski, A. Kothe, N. Engel, M. Wilke, R. Al-Obaidi, D. Tolksdorf, A. Firsov, M. Brzhezinskaya, A. Erko, I. Y. Kiyan, and E. F. Aziz, "Monochromatization of femtosecond XUV light pulses with the use of reflection zone plates," Opt. Express 22, 10747-10760 (2014). https://doi.org/10.1364/OE.22.010747
- Y.-G. Kim, H.-G. Rhee, Y.-S. Ghim, H.-S. Yang, and Y.-W. Lee, "Dual-line fabrication method in direct laser lithography to reduce the manufacturing time of diffractive optics elements," Opt. Express 25, 1636-1645 (2017). https://doi.org/10.1364/OE.25.001636
- H.-G. Rhee and Y.-W. Lee, "Improvement of linewidth in laser beam lithographed computer generated hologram," Opt. Express 18, 1734-1740 (2010). https://doi.org/10.1364/OE.18.001734
- Y.-G. Kim, H.-G. Rhee, Y.-S. Ghim, and Y.-W. Lee, "Method of fabricating an array of diffractive optical elements by using a direct laser lithography," Int. J. Adv. Manuf. Technol. 101, 1681-1685 (2019). https://doi.org/10.1007/s00170-018-3058-7
- H. Merdji, G. Souille, M. Idir, G. Cauchon, A. Mirone, C. Chenais-Popovics, and P. Dhez, "2-D X-ray laser-plasma imaging using Bragg Fresnel multilayer zone plates," Opt. Commun. 155, 398-405 (1998). https://doi.org/10.1016/S0030-4018(98)00371-X
- Q. Fan, S. Wang, Z. Yang, L. Wei, F. Hu, H. Zang, Q. Zhang, C. Wang, G. Jiang, and L. Cao, "The realization of long focal depth with a linear varied-area zone plate," J. Mod. Opt. 64, 244-250 (2017). https://doi.org/10.1080/09500340.2016.1229504
- A. G. Poleshchuk, E. G. Churin, V. P. Koronkevich, V. P. Korolkov, A. A. Kharissov, V. V. Cherkashin, V. P. Kiryanov, A. V. Kiryanov, S. A. Kokarev, and A. G. Verhoglyad, "Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure," Appl. Opt. 38, 1295-1301 (1999). https://doi.org/10.1364/AO.38.001295
- S. Chen, A. Lyon, J. Kirz, S. Seshadri, Y. Feng, M. Feser, S. Sassolini, F. Duewer, X. Zeng, and C. Huang, "Absolute efficiency measurement of high-performance zone plates," Proc. SPIE 7448, 74480D (2009). https://doi.org/10.1117/12.825367