Acknowledgement
이 논문은 2019년도 한밭대학교 대학회계 연구비를 지원받아 작성되었음.
References
- Y. Noh, D. Kim, S. Choi, C. Cho, T. Kim, G. Kim, and D. Shin, "High resolution fine dust mass concentration calculation using two-wavelength scanning lidar system," Korean J. Remote Sens. 36, 1681-1690 (2020). https://doi.org/10.7780/KJRS.2020.36.6.3.5
- C. Xie, M. Zhao, B. Wang, Z. Zhong, L. Wang, D. Liu, and Y. Wang, "Study of the scanning lidar on the atmospheric detection," J. Quant. Spectrosc. Radiat. Transf. 150, 114-120 (2015). https://doi.org/10.1016/j.jqsrt.2014.08.023
- N. Graves and S. Newsam, "Camera-based visibility estimation: incorporating multiple regions and unlabeled observations," Ecol. Inform. 23, 62-68 (2014). https://doi.org/10.1016/j.ecoinf.2013.08.005
- S. Park and D. Kim, "Aerosol-extinction retrieval method at three effective RGB wavelengths using a commercial digital camera," Korean J. Opt. Photonics 31, 71-80 (2020). https://doi.org/10.3807/KJOP.2020.31.2.071
- D. Kim, "Real-time measurement of fog aerosol extinction coefficients at the three RGB wavelengths using general landscape images," in Proc. International Symposium on Remote Sensing (Korea, May 2021), pp.123-126.
- T. Mori and M. Burton, "The SO2 camera: a simple, fast and cheap method for ground-based imaging of SO2 in volcanic plumes," Geophys. Res. Lett. 33, L24804 (2006). https://doi.org/10.1029/2006GL027916
- T. Halldorsson and J. Langerholc, "Geometrical form factors for the lidar function," Appl. Opt. 17, 240-244 (1978). https://doi.org/10.1364/AO.17.000240
- J. Wang, W. Liu, C. Liu, T. Zhang, J. Liu, Z. Chen, Y. Xiang, and X. Meng, "The determination of aerosol distribution by a no-blind-zone scanning lidar," Remote Sens. 12, 626 (2020). https://doi.org/10.3390/rs12040626
- A. Shimizu, T. Nishizawa, Y. Jin, S.-W. Kim, Z. Wang, D. Batdorj, and N. Sugimoto, "Evolution of a lidar network for tropospheric aerosol detection in East Asia," Opt. Eng. 56, 031219 (2016). https://doi.org/10.1117/1.oe.56.3.031219
- R. E. W. Pettifer, "Signal induced noise in lidar experiments," J. Atmos. Terr. Phys. 37, 669-673 (1975). https://doi.org/10.1016/0021-9169(75)90062-8
- A. Comeron, F. Rocadenbosch, M. A. Lopez, A. Rodriguez, C. Munoz, D. Garcia-Vizcaino, and M. Sicard, "Effects of noise on lidar data inversion with the backward algorithm," Appl. Opt. 43, 2572-2577 (2004). https://doi.org/10.1364/AO.43.002572
- S. W. Dho, Y. J. Park, and H. J. Kong, "Experimental determination of a geometric form factor in a lidar equation for an inhomogeneous atmosphere," Appl. Opt. 36, 6009-6010 (1997). https://doi.org/10.1364/AO.36.006009
- Y. Sasano, H. Shimizu, N. Takeuchi, and M. Okuda, "Geometrical form factor in the laser radar equation: an experimental determination," Appl. Opt. 18, 3908-3910 (1979). https://doi.org/10.1364/AO.18.003908
- J. Li, C. Li, Y. Zhao, J. Li, and Y. Chu, "Geometrical constraint experimental determination of Raman lidar overlap profile," Appl. Opt. 55, 4924-4928 (2016). https://doi.org/10.1364/AO.55.004924
- G. Biavati, G. D. Donfrancesco, F. Cairo, and D. G. Feist, "Correction scheme for close-range lidar returns," Appl. Opt. 50, 5872-5882 (2011). https://doi.org/10.1364/AO.50.005872
- J. Su, M. P. McCormick, Z. Liu, K. H. Leavor, R. B. Lee, J. Lewis, and M. T. Hill, "Obtaining a ground-based lidar geometric form factor using coincident spaceborne lidar measurements," Appl. Opt. 49, 108-113 (2010). https://doi.org/10.1364/AO.49.000108
- R. M. Measures, Laser remote sensing: fundamentals and applications, Hardcover ed. (Krieger Publishing Company, USA, 1985), p. 524.
- L. Mei and M. Brydegaard, "Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system," Opt. Express 23, 247841 (2015).
- L. Mei and M. Brydegaard, "Continuous-wave differential absorption lidar," Laser Photonics Rev. 9, 629-636 (2015). https://doi.org/10.1002/lpor.201400419
- M. Brydegaard, A. Gebru, and S. Svanberg, "Super resolution laser radar with blinking atmospheric particles Application to interacting flying insects," Prog. Electromagn. Res. 147, 141-151 (2014). https://doi.org/10.2528/PIER14101001
- G. Sun, L. Qin, Z. Hou, X. Jing, F. He, F. Tan, and S. Zhang, "Small-scale Scheimpflug lidar for aerosol extinction coefficient and vertical atmospheric transmittance detection," Opt. Express 26, 7423-7436 (2018). https://doi.org/10.1364/OE.26.007423
- L. Mei and M. Brydegaard, "Development of a Scheimpflug lidar system for atmospheric aerosol monitoring," EPJ Web Conf. 119, 27005 (2016). https://doi.org/10.1051/epjconf/201611927005
- L. Mei, Z. Kong, T. Ma, L. Li, and Z. Liu, "Applications of the Scheimpflug lidar technique in atmospheric remote sensing," in Proc. Photonics & Electromagnetics Research Symposium (Rome, Italy, Jun. 2019).
- M. Brydegaard, E. Malmqvist, S. Jansson, J. Larsson, S. Torok, and G. Zhao, "The Scheimpflug lidar method," Proc. SPIE 10406, 104060I (2017).
- A. Kabir, N. Sharma, J. E. Barnes, J. Butt, M. Bridgewater, and N. Stubbs, "Aerosol mapping using a Bistatic camera lidarand comparing with radiosonde data in the Bahamas," in Proc. IGARSS 2018 - IEEE International Geoscience and Remote Sensing Symposium (Valencia, Spain, Jul. 2018), pp. 3230-3233.
- Z. Kong, Z. Liu, L. Zhang, P. Guan, L. Li, and L. Mei, "Atmospheric pollution monitoring in urban area by employing a 450-nm lidar system," Sensors 18, 1880 (2018). https://doi.org/10.3390/s18061880
- Y. Yang, P. Guan, and L. Mei, "A scanning Scheimpflug lidar system developed for urban pollution monitoring," EPJ Web Conf. 176, 01013 (2018). https://doi.org/10.1051/epjconf/201817601013
- J. D. Klett, "Lidar inversion with variable backscatter/extinction ratios," Appl. Opt. 24, 1638-1643 (1985). https://doi.org/10.1364/AO.24.001638