DOI QR코드

DOI QR Code

Nonlinear structural finite element model updating with a focus on model uncertainty

  • 투고 : 2022.08.08
  • 심사 : 2022.12.19
  • 발행 : 2022.12.25

초록

This paper assesses the influences of modeling assumptions and uncertainties on the performance of the non-linear finite element (FE) model updating procedure and model clustering method. The results of a shaking table test on a four-story steel moment-resisting frame are employed for both calibrations and clustering of the FE models. In the first part, simple to detailed non-linear FE models of the test frame is calibrated to minimize the difference between the various data features of the models and the structure. To investigate the effect of the specified data feature, four of which include the acceleration, displacement, hysteretic energy, and instantaneous features of responses, have been considered. In the last part of the work, a model-based clustering approach to group models of a four-story frame with similar behavior is introduced to detect abnormal ones. The approach is a composition of property derivation, outlier removal based on k-Nearest neighbors, and a K-means clustering approach using specified data features. The clustering results showed correlations among similar models. Moreover, it also helped to detect the best strategy for modeling different structural components.

키워드

참고문헌

  1. EN 1993-1-1 (2005), Eurocode 3: Design of Steel Structures-Part 1-1: General Rules and Rules for Buildings, CEN, Brussels, Belgium.
  2. BS10210 (2006), British Standard: Hot Finished Structural Hollow Sections of Non-Alloy and Fine Grain Steels-Part 2: Tolerances, Dimensions, and Sectional Properties, British Standard Institute, London, England.
  3. Aggarwal, C.C. (2017), Proximity-Based Outlier Detection, Springer, New York, New York, USA.
  4. Altman, N.S. (1992), "An introduction to kernel and nearestneighbor nonparametric regression", Am. Stat., 46(3), 175-185. https://doi.org/10.1080/00031305.1992.10475879.
  5. Asgarieh, E., Moaveni, B., Barbosa, A.R. and Chatzi, E. (2017), "Nonlinear model calibration of a shear wall building using time and frequency data features", Mech. Syst. Signal Pr., 85, 236-251. https://doi.org/10.1016/j.ymssp.2016.07.045.
  6. Astroza, R., Ebrahimian, H. and Conte, J.P. (2019), "Performance comparison of Kalman- based filters for nonlinear structural finite element model updating", J. Sound Vib., 438, 520-542. https://doi.org/10.1016/j.jsv.2018.09.023.
  7. Beck, J.L. and Katafygiotis, L.S. (1998), "Updating models and their uncertainties. I: Bayesian statistical framework", J. Eng. Mech., 124(4), 455-461. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(455).
  8. Behmanesh, I. and Moaveni, B. (2015), "Probabilistic identification of simulated damage on the dowling hall footbridge through Bayesian finite element model updating", Struct. Control Health Monit., 22(3), 463-483. https://doi.org/10.1002/stc.1684.
  9. Bertero, R.D. and Bertero, V.V. (2002), "Performance-based seismic engineering: the need for a reliable conceptual comprehensive approach", Earthq. Eng. Struct. Dyn., 31(3), 627-652. https://doi.org/10.1002/eqe.146.
  10. Bouc, R. (1967), "Forced vibrations of mechanical systems with hysteresis", Proceedings of the Fourth Conference on Nonlinear Oscillations, Prague, Czech Republic, September.
  11. Campione, G., Cavaleri, L., Macaluso, G., Amato, G. and Di Trapani, F. (2015), "Evaluation of infilled frames: An updated in-plane-stiffness macro-model considering the effects of vertical loads", Bull. Earthq. Eng., 13(8), 2265-2281. https://doi.org/10.1007/s10518-014-9714-x.
  12. Cao, G. and Bouman, C.A. (2008), "Covariance estimation for high dimensional data vectors using the sparse matrix transform", Proceedings of the 21st International Conference on Neural Information Processing Systems, Vancouver, Canada, December.
  13. Castaldo, P. and Amendola, G. (2021), "Optimal sliding friction coefficients for isolated viaducts and bridges: A comparison study", Struct. Control Health Monit., 28(12), e2838. https://doi.org/10.1002/stc.2838.
  14. Castaldo, P., Gino, D., Bertagnoli, G. and Mancini, G. (2020), "Resistance model uncertainty in non-linear finite element analyses of cyclically loaded reinforced concrete systems", Eng. Struct., 211, 110496. https://doi.org/10.1016/j.engstruct.2020.110496.
  15. Castaldo, P., Gino, D., Marano, G.C. and Mancini, G. (2022), "Aleatory uncertainties with global resistance safety factors for non-linear analyses of slender reinforced concrete columns", Eng. Struct., 255, 113920. https://doi.org/10.1016/j.engstruct.2022.113920.
  16. Castro, J., Elghazouli, A. and Izzuddin, B. (2005), "Modelling of the panel zone in steel and composite moment frames", Eng. Struct., 27(1), 129-144. https://doi.org/10.1016/j.engstruct.2004.09.008.
  17. Ching, J. and Beck, J.L. (2004), "New Bayesian model updating algorithm applied to a structural health monitoring benchmark", Struct. Health Monit., 3(4), 313-332. https://doi.org/10.1177/1475921704047499.
  18. AISC (2010), Specification for Structural Steel Buildings (ANSI/AISC 360-10), American Institute of Steel Construction, Chicago-Illinois, USA.
  19. Cover, T. and Hart, P. (1967), "Nearest neighbor pattern classification", IEEE Trans. Inf. Theory, 13(1), 21-27. https://doi.org/10.1109/TIT.1967.1053964.
  20. Crisafulli, F.J. and Carr, A.J. (2007), "Proposed macro-model for the analysis of infilled frame structures", Bull. N.Z. Soc. Earthq. Eng., 40(2), 69-77. https://doi.org/10.5459/bnzsee.40.2.69-77.
  21. Decanini, L., Mollaioli, F., Mura, A. and Saragoni, R. (2004). "Seismic performance of masonry infilled R/C frames", 13th World Conference on Earthquake Engineering, Vancouver, British Columbia, Canada, August.
  22. Der Kiureghian, A. and Ditlevsen, O. (2009), "Aleatory or epistemic? Does it matter?", Struct. Saf., 31(2), 105-112. https://doi.org/10.1016/j.strusafe.2008.06.020.
  23. Diez, A., Khoa, N.L.D., Alamdari, M.M., Wang, Y., Chen, F. and Runcie, P. (2016), "A clustering approach for structural health monitoring on bridges", J. Civil Struct. Health Monit., 6(3), 429-445. https://doi.org/10.1007/s13349-016-0160-0.
  24. Doebling, S.W., Farrar, C.R., Prime, M.B. and Shevitz, D.W. (1996), "Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review", Report No. LA13070-MS, Los Alamos National Laboratory.
  25. Dolsek, M. and Fajfar, P. (2008), "The effect of masonry infills on the seismic response of a four-storey reinforced concrete frame-a deterministic assessment", Eng. Struct., 30(7), 1991-2001. https://doi.org/10.1016/j.engstruct.2008.01.001.
  26. Ebrahimi, M. and Karami Mohammadi, R. (2020), "Damage detection of steel moment frames under earthquake excitation", Struct. Control Health Monit., 27(10), e2599. https://doi.org/10.1002/stc.2599.
  27. El-Dakhakhni, W.W., Hamid, A.A. and Elgaaly, M. (2004). "Strength and stiffness prediction of masonry infill panels", Proceedings of 13th World Conference on Earthquake Engineering, Vancouver, British Columbia, Canada, August.
  28. Fan, C.L. (2021), "Detection of multidamage to reinforced concrete using support vector machine-based clustering from digital images", Struct. Control Health Monit., 28(12), e2841. https://doi.org/10.1002/stc.2841.
  29. Feldman, M. (1997), "Non-linear free vibration identification via the Hilbert transform", J. Sound Vib., 208(3), 475-489. https://doi.org/10.1006/jsvi.1997.1182.
  30. Fielding, D. and Huang, J. (1971), "Shear in steel beam-to-column connections", Weld. J., 50(7), 313-326.
  31. Filippou, F.C., Popov, E.P. and Bertero, V.V. (1983), "Modeling of R/C joints under cyclic excitations", J. Struct. Eng., 109(11), 2666-2684. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:11(2666).
  32. Gino, D., Castaldo, P., Giordano, L. and Mancini, G. (2021), "Model uncertainty in non-linear numerical analyses of slender reinforced concrete members", Struct. Concrete, 22(2), 845-870. https://doi.org/10.1002/suco.202000600.
  33. Gupta, A. and Krawinkler, H. (1998), "Seismic demands for the performance evaluation of steel moment resisting frame structures", Report No. 132, Stanford University.
  34. Ibarra, L.F., Medina, R.A. and Krawinkler, H. (2005), "Hysteretic models that incorporate strength and stiffness deterioration", Earthq. Eng. Struct. Dyn., 34(12), 1489-1511. https://doi.org/10.1002/eqe.495.
  35. Kerschen, G., Worden, K., Vakakis, A.F. and Golinval, J.C. (2006), "Past, present and future of nonlinear system identification in structural dynamics", Mech. Syst. Signal Pr., 20(3), 505-592. https://doi.org/10.1016/j.ymssp.2005.04.008.
  36. Kim, K. and Engelhardt, M.D. (1995), "Development of analytical models for earthquake analysis of steel moment frames", Ph.D. Dissertation, University of Texas at Austin, Austin, Texas, USA.
  37. Kim, K.D. and Engelhardt, M.D. (2002), "Monotonic and cyclic loading models for panel zones in steel moment frames", J. Constrete Steel Res., 58(5-8), 605-635. https://doi.org/10.1016/S0143-974X(01)00079-7.
  38. Kitayama, S. and Constantinou, M.C. (2018), "Collapse performance of seismically isolated buildings designed by the procedures of ASCE/SEI 7", Eng. Struct., 164, 243-258. https://doi.org/10.1016/j.engstruct.2018.03.008.
  39. Krawinkler, H. (1971), "Inelastic behavior of steel beam-tocolumn subassemblages", Report No. UCB/EERC-71/07, University of California, Berkeley.
  40. Krawinkler, H. (1978), "Shear in beam-column joints in seismic design of steel frames", Eng. J., 15(3), 82-91.
  41. Krawinkler, H., Popov, E.P. and Bertero, V.V. (1975), "Shear behavior of steel frame joints", J. Struct. Div., 101(11), 2317-2336. https://doi.org/10.1061/JSDEAG.0004206.
  42. Lederman, G., Wang, Z., Bielak, J., Noh, H., Garrett, J.H., Chen, S., Kovacevic, J., Cerda, F. and Rizzo, P. (2014), "Damage quantification and localization algorithms for indirect SHM of bridges", Proceedings of the 7th International Conference on Bridge Maintenance, Safety and Management, Shanghai, China, July.
  43. Li, P., Wadee, M.A., Yu, J., Christie, N.G. and Wu, M. (2016), "Stability of prestressed stayed steel columns with a three branch crossarm system", J. Constrete Steel Res., 122, 274-291. https://doi.org/10.1016/j.jcsr.2016.03.007.
  44. Lui, E.M. (1986), "Effects of connection flexibility and panel zone deformation on the behavior of plane steel frames", Ph.D Dissertation, Purdue University, West Lafayette, Indiana.
  45. Lui, E.M. and Wai-Fah, C. (1986), "Frame analysis with panel zone deformation", Int. J. Solid. Struct., 22(12), 1599-1627. https://doi.org/10.1016/0020-7683(86)90065-X.
  46. Ma, Z.S., Liu, L., Zhou, S.D., Yu, L., Naets, F., Heylen, W. and Desmet, W. (2018), "Parametric output-only identification of time-varying structures using a kernel recursive extended least squares TARMA approach", Mech. Syst. Signal. Pr., 98, 684-701. https://doi.org/10.1016/j.ymssp.2017.05.013.
  47. Marwala, T. and Sibisi, S. (2005), "Finite element model updating using Bayesian framework and modal properties", J. Aircr., 42(1), 275-278. https://doi.org/10.2514/1.11841.
  48. Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2006), Open System for Earthquake Engineering Simulation User Command-Language Manual.
  49. Moaveni, B. and Asgarieh, E. (2012), "Deterministic-stochastic subspace identification method for identification of nonlinear structures as time-varying linear systems", Mech. Syst. Signal. Pr., 31, 40-55. https://doi.org/10.1016/j.ymssp.2012.03.004.
  50. Mulas, M.G. (2004), "A structural model for panel zones in non linear seismic analysis of steel moment-resisting frames", Eng. Struct., 26(3), 363-380. https://doi.org/10.1016/j.engstruct.2003.10.009.
  51. Nicola, T., Leandro, C., Guido, C. and Enrico, S. (2015), "Masonry infilled frame structures: state-of-the-art review of numerical modelling", Earthq. Struct., 8(3), 733-759. https://doi.org/10.12989/eas.2015.8.1.225.
  52. Panagiotakos, T. and Fardis, M. (1996). "Seismic response of infilled RC frames structures", Proceedings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico, January.
  53. Paulay, T. and Priestley, M.N. (1992), Seismic Design of Reinforced Concrete and Masonry Buildings, Wiley, New York, New York, USA.
  54. Pence, B.L., Fathy, H.K. and Stein, J.L. (2011), "Recursive maximum likelihood parameter estimation for state space systems using polynomial chaos theory", Automatica, 47(11), 2420-2424. https://doi.org/10.1016/j.automatica.2011.08.014.
  55. Priestley, M.N. and Calvi, G.M. (1991), "Towards a capacitydesign assessment procedure for reinforced concrete frames", Earthq. Spectra, 7(3), 413-437. https://doi.org/10.1193/1.1585635.
  56. Qiu, L., Yuan, S., Mei, H. and Fang, F. (2016), "An improved Gaussian mixture model for damage propagation monitoring of an aircraft wing spar under changing structural boundary conditions", Sensors, 16(3), 291. https://doi.org/10.3390/s16030291.
  57. Saneinejad, A. and Hobbs, B. (1995), "Inelastic design of infilled frames", J. Struct. Eng., 121(4), 634-650. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:4(634).
  58. Santos, A., Figueiredo, E. and Costa, J. (2015). "Clustering studies for damage detection in bridges: A comparison study", Proceeding of 10th International Workshop on Structural Health Monitoring, Stanford, California, USA, September.
  59. Santos, A., Silva, M., Santos, R., Figueiredo, E., Sales, C. and Costa, J. (2016). "Output-only structural health monitoring based in mean shift clustering for vibration-based damage detection", Proceeding of 8th European Workshop on Structural Health Monitoring, Bilbao, Spain, July.
  60. Sattar, S. and Liel, A.B. (2016), "Seismic performance of nonductile reinforced concrete frames with masonry infill wallsI: development of a strut model enhanced by finite element models", Earthq. Spectra, 32(2), 795-818. https://doi.org/10.1193/90914eqs139m.
  61. Schneider, S.P. and Amidi, A. (1998), "Seismic behavior of steel frames with deformable panel zones", J. Struct. Eng., 124(1), 35-42. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:1(35).
  62. Shi, Y. and Eberhart, R. (1998), "A modified particle swarm optimizer", 1998 IEEE International Conference on Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), Anchorage, AK, USA, May.
  63. Sivaselvan, M.V. and Reinhorn, A.M. (2000), "Hysteretic models for deteriorating inelastic structures", J. Eng. Mech., 126(6), 633-640. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:6(633).
  64. Sohn, H. and Farrar, C.R. (2001), "Damage diagnosis using time series analysis of vibration signals", Smart Mater. Struct., 10(3), 446. https://doi.org/10.1088/0964-1726/10/3/304.
  65. Sohn, H. and Law, K.H. (1997), "A Bayesian probabilistic approach for structure damage detection", Earthq. Eng. Struct. Dyn., 26(12), 1259-1281. https://doi.org/10.1002/(SICI)1096-9845(199712)26:12<1259::AID-EQE709>3.0.CO,2-3.
  66. Song, M., Astroza, R., Ebrahimian, H., Moaveni, B. and Papadimitriou, C. (2020), "Adaptive Kalman filters for nonlinear finite element model updating", Mech. Syst. Signal Pr., 143, 106837. https://doi.org/10.1016/j.ymssp.2020.106837.
  67. Song, M., Renson, L., Moaveni, B. and Kerschen, G. (2022), "Bayesian model updating and class selection of a wing-engine structure with nonlinear connections using nonlinear normal modes", Mech. Syst. Signal Pr., 165, 108337. https://doi.org/10.1016/j.ymssp.2021.108337.
  68. EN 1998-1 (2005), Eurocode 8: Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings, CEN, Brussels, Belgium.
  69. Suita, K., Yamada, S., Tada, M., Kasai, K., Matsuoka, Y. and Shimada, Y. (2008), "Collapse experiment on 4-story steel moment frame: Part 2 detail of collapse behavior", Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, October.
  70. Taghipour, A. (2016), "Seismic behavior of vertical reinforced autoclaved aerated concrete (AAC) panel walls", Master's thesis, Middle East Technical University, Ankara, Turkey.
  71. Tibaduiza, D.A., Mujica, L.E. and Rodellar, J. (2013), "Damage classification in structural health monitoring using principal component analysis and self-organizing maps", Struct. Control Health Monit., 20(10), 1303-1316. https://doi.org/10.1002/stc.1540.
  72. Tsai, K.C. and Popov, E.P. (1988), "Steel beam-column joints in seismic moment resisting frames", Ph.D. Dissertation, University of California, Berkeley, CA, USA.
  73. Tuan-Nam, T. and Kasai, K. (2012). "Study on shaking-table experiment of a full-scale four-story steel building", Proceeding of 15th World Conference on Earthquake Engineering, Lisbon, Portugal, September.
  74. Uva, G., Raffaele, D., Porco, F. and Fiore, A. (2012), "On the role of equivalent strut models in the seismic assessment of infilled RC buildings", Eng. Struct., 42, 83-94. https://doi.org/10.1016/j.engstruct.2012.04.005.
  75. Van Overschee, P. and De Moor, B. (1996), Subspace Identification for Inear Systems: Theory-ImplementationApplications, Kluwer Academic Publishers, Dordrecht, Netherlands.
  76. Wang, S.J. (1989), "Seismic response of steel building frames with inelastic joint deformation", Ph.D. Dissertation, Lehigh University, Bethlehem, Pennsylvania, USA.
  77. Wang, Z.C., Ren, W.X. and Chen, G.D. (2013), "Time-varying linear and nonlinear structural identification with analytical mode decomposition and Hilbert transform", J. Struct. Eng., 139(12), 06013001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000832.
  78. Wang, Z.C., Xin, Y. and Ren, W.X. (2015), "Nonlinear structural model updating based on instantaneous frequencies and amplitudes of the decomposed dynamic responses", Eng. Struct., 100, 189-200. https://doi.org/10.1016/j.engstruct.2015.06.002.
  79. Wang, Z.C., Xin, Y. and Ren, W.X. (2016), "Nonlinear structural joint model updating based on instantaneous characteristics of dynamic responses", Mech. Syst. Signal Pr., 76, 476-496. https://doi.org/10.1016/j.ymssp.2016.01.024.
  80. Weng, J.H. and Loh, C.H. (2011), "Recursive subspace identification for on-line tracking of structural modal parameter", Mech. Syst. Signal Pr., 25(8), 2923-2937. https://doi.org/10.1016/j.ymssp.2011.05.013.
  81. Wong, K.C. and Temple, M.C. (1982), "Stayed column with initial imperfection", J. Struct. Div., 108(7), 1623-1640. https://doi.org/10.1061/JSDEAG.0005992.
  82. Wu, W., Xiong, H. and Shekhar, S. (2003), Clustering and Information Retrieval, Kluwer Academic Publishers, Amsterdam, Netherlands.
  83. Yamada, S., Kasai, K., Shimada, Y., Suita, K., Tada, M. and Matsuoka, Y. (2009), "Full scale shaking table collapse experiment on 4-story steel moment frame: Part 1 outline of the experiment", Proceedings of Behaviour of Steel Structures in Seismic Areas: STESSA 2009, Philadelphia, Pennsylvania, USA, August.
  84. Yamada, S., Suita, K., Tada, M., Kasai, K., Matsuoka, Y. and Shimada, Y. (2008). "Collapse experiment on 4-story steel moment frame: Part 1 outline of test results", Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, October.
  85. Yang, J.N., Xia, Y. and Loh, C.H. (2014), "Damage detection of hysteretic structures with a pinching effect", J. Eng. Mech., 140(3), 462-472. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000581.
  86. Yu, L., Zhu, J.H. and Yu, L.L. (2013), "Structural damage detection in a truss bridge model using fuzzy clustering and measured FRF data reduced by principal component projection", Adv. Struct. Eng., 16(1), 207-217. https://doi.org/10.1260/1369-4332.16.1.207.
  87. Yuen, K.V. and Katafygiotis, L.S. (2001), "Bayesian time-domain approach for modal updating using ambient data", Probab. Eng. Mech., 16(3), 219-231. https://doi.org/10.1016/S0266-8920(01)00004-2.
  88. Zhou, Y.L., Maia, N.M., Sampaio, R.P. and Wahab, M.A. (2017), "Structural damage detection using transmissibility together with hierarchical clustering analysis and similarity measure", Struct. Health Monit., 16(6), 711-731. https://doi.org/10.1177/1475921716680849.