Acknowledgement
The authors would like to thank the organizations of the International Project Competition for SHM (IPC-SHM 2020) ANCRiSST, Harbin Institute of Technology (China), and University of Illinois at Urbana-Champaign (USA) for their generously providing the invaluable data from actual structures. The authors also would like to thank the chairs of IPC-SHM 2020 Prof. Hui Li and Prof. Billie F. Spencer Jr for their leadership on the competition. The work presented in this paper was financially supported by the Real-time Earthquake Risk Reduction for a Resilient Europe 'RISE' project, financed under the European Union Horizon 2020 research and innovation program, under grant agreement No 821115, as well as the ETH Risk Center project 'DynaRisk', financed under grant agreement ETH-11 18-1.
References
- Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M. and Inman, D.J. (2017), "Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks", J. Sound Vib., 388, 154-170. http://dx.doi.org/10.1016/j.jsv.2016.10.043
- Allemang, R.J. (1982), "A correlation coefficient for modal vector analysis", Proceedings of the 1st International Modal Analysis Conference.
- Alonso, E.E., Pinyol, N.M. and Puzrin, A.M. (2010), Geomechanics of Failures. Advanced Topics, Dordrecht, Springer Netherlands. http://link.springer.com/10.1007/978-90-481-3538-7
- An, Y., Chatzi, E., Sim, S.H., Laflamme, S., Blachowski, B. and Ou, J. (2019), "Recent progress and future trends on damage identification methods for bridge structures", Struct. Control Health Monitor., 26(10), 1-30. https://doi.org/10.1002/stc.2416
- Athanasiou, M., Sfrintzeri, K., Zarkogianni, K., Thanopoulou, A.C. and Nikita, K.S. (2020), "An explainable XGBoost-based approach towards assessing the risk of cardiovascular disease in patients with Type 2 Diabetes Mellitus", Proceedings of 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE), Cincinnati, OH, USA, October, pp. 859-864. https://ieeexplore.ieee.org/document/9288053/
- Avendano-Valencia, L.D., Chatzi, E.N., Koo, K.Y. and Brownjohn, J.M. (2017), "Gaussian process time-series models for structures under operational variability", Front. Built Environ., 3. http://journal.frontiersin.org/article/10.3389/fbuil.2017.00069/full
- Azimi, M., Eslamlou, A.D. and Pekcan, G. (2020), "Data-driven structural health monitoring and damage detection through deep learning: State-of-the-art review", Sensors, 20(10), 2778. https://doi.org/10.3390/s20102778
- Bao, Y., Chen, Z., Wei, S., Xu, Y., Tang, Z. and Li, H. (2019a), "The state of the art of data science and engineering in structural health monitoring", Engineering, 5(2), 234-242. https://doi.org/10.1016/j.eng.2018.11.027
- Bao, Y., Tang, Z., Li, H. and Zhang, Y. (2019b), "Computer vision and deep learning-based data anomaly detection method for structural health monitoring", Struct. Health Monitor., 18(2), 401-421. https://doi.org/10.1177/14759217211006485
- Bao, Y., Li, J., Nagayama, T., Xu, Y., Spencer Jr, B.F. and Li, H. (2021), "The 1st International Project Competition for Structural Health Monitoring (IPC-SHM, 2020): A Summary and Benchmark Problem", Struct. Health Monitor., 20(4), 2229-2239. https://doi.org/10.1177/14759217211006485
- Bull, L., Worden, K., Manson, G. and Dervilis, N. (2018), "Active learning for semi-supervised structural health monitoring", J. Sound Vib., 437, 373-388. https://doi.org/10.1016/j.jsv.2018.08.040
- Bussmann, N., Giudici, P., Marinelli, D. and Papenbrock, J. (2020), "Explainable AI in fintech risk management", Front. Artif. Intell., 3, 26. https://doi.org/10.3389/frai.2020.00026
- Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y. and Cho, H. (2018), "Xgboost: extreme gradient boosting", R. Package Version 0.71-2, pp. 1-4.
- Dietterich, T. (1995), "Overfitting and undercomputing in machine learning", ACM Computing Surveys (CSUR) 27(3), 326-327. https://doi.org/10.1145/212094.212114
- Fan, W. and Qiao, P. (2011), "Vibration-based damage identification methods: a review and comparative study", Struct. Health Monitor., 10(1), 83-111. https://doi.org/10.1177/1475921710365419
- Figueiredo, E. and Santos, A. (2018), "Machine learning algorithms for damage detection", In: Vibration-Based Techniques for Damage Detection and Localization in Engineering Structures, pp. 1-39. https://doi.org/10.1142/9781786344977_0001
- Figueiredo, E., Park, G., Farrar, C.R., Worden, K. and Figueiras, J. (2011), "Machine learning algorithms for damage detection under operational and environmental variability", Struct. Health Monitor., 10(6), 559-572. https://doi.org/10.1177/1475921710388971
- Fulcher, B.D. and Jones, N.S. (2014), "Highly comparative feature-based time-series classification", IEEE Transact. Knowl. Data Eng., 26(12), 3026-3037. https://doi.org/10.1109/TKDE.2014.2316504
- Goldberger, J., Hinton, G.E., Roweis, S. and Salakhutdinov, R.R. (2005), "Neighbourhood components analysis", In: Advances in Neural Information Processing Systems, MIT Press.
- Gui, G., Pan, H., Lin, Z., Li, Y. and Yuan, Z. (2017), "Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection", KSCE J. Civil Eng., 21(2), 523-534. https://doi.org/10.1007/s12205-017-1518-5
- Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J. and Scholkopf, B. (1998), "Support vector machines", IEEE Intell. Syst. their Applicat., 13(4), 18-28. https://doi.org/10.1109/5254.708428
- Hill, T.P. (1995a), "A statistical derivation of the significant-digit law", Statist. Sci., 10(4), 354-363. https://doi.org/10.1214/ss/1177009869
- Hill, T.P. (1995b), "The significant-digit phenomenon", Am. Mathe. Monthly, 10(4), 322-327. https://doi.org/10.1080/00029890.1995.11990578
- Jaishi, B. and Ren, W.X. (2006), "Damage detection by finite element model updating using modal flexibility residual", J. Sound Vib., 290(1-2), 369-387. https://doi.org/10.1016/j.jsv.2005.04.006
- Lim, S. and Chi, S. (2019), "Xgboost application on bridge management systems for proactive damage estimation", Adv. Eng. Inform., 41, 100922. https://doi.org/10.1016/j.aei.2019.100922
- Limongelli, M.P., Chatzi, E., Dohler, M., Lombaert, G. and Reynders, E. (2016), "Towards extraction of vibration-based damage indicators", Proceedings of the 8th European Workshop on Structural Health Monitoring, EWSHM 2016, Bilbao, Spain, July, Vol. 1, pp. 546-555.
- Long, J. and Buyukozturk, O. (2014), "Automated structural damage detection using one-class machine learning", Proceedings of the Society for Experimental Mechanics Series, Vol. 4, pp. 117-128. https://doi.org/10.1007/978-3-319-04546-7_14
- Lundberg, S.M. and Lee, S.I. (2017), "A unified approach to interpreting model predictions", Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, pp. 4768-4777.
- Lundberg, S.M., Nair, B., Vavilala, M.S., Horibe, M., Eisses, M.J., Adams, T., Liston, D.E., Low, D.K.W., Newman, S.F., Kim, J. and Lee, S.I. (2018), "Explainable machine-learning predictions for the prevention of hypoxaemia during surgery", Nature Biomed. Eng., 2(10), 749-760. https://doi.org/10.1038/s41551-018-0304-0
- Martakis, P., Reuland, Y. and Chatzi, E. (2021), "Amplitude-dependent model updating of masonry buildings undergoing demolition", Smart Struct. Syst., Int. J., 27, 157-172. https://doi.org/10.12989/sss.2021.27.2.157
- Moaveni, B., Conte, J.P. and Hemez, F.M. (2009), "Uncertainty and sensitivity analysis of damage identification results obtained using finite element model updating", Comput.-Aided Civil Infrastr. Eng., 24(5), 320-334. https://doi.org/10.1111/j.1467-8667.2008.00589.x
- Movsessian, A., Cava, D.G., Tcherniak, D. and Janeliukstis, R. (2020), "A methodology on interpretable novelty detection", Proceedings of the 1th International Conference on Structural Dynamics, Athens, Greece, November, pp. 922-935. https://doi.org/10.47964/1120.9073.19621
- Movsessian, A., Cava, D.G. and Tcherniak, D. (2021), "Interpretable machine learning in damage detection using Shapley Additive Explanations", Preprint. https://doi.org/10.31224/osf.io/96yf5
- Musavi, M.T., Ahmed, W., Chan, K.H., Faris, K.B. and Hummels, D.M. (1992), "On the training of radial basis function classifiers", Neural Networks, 5(4), 595-603. https://doi.org/10.1016/S0893-6080(05)80038-3
- Neves, A.C., Gonzalez, I., Leander, J. and Karoumi, R. (2017), "Structural health monitoring of bridges: a model-free ANN-based approach to damage detection", J. Civil Struct. Health Monitor., 7(5), 689-702. https://doi.org/10.1007/s13349-017-0252-5
- Onchis, D.M. and Gillich, G.R. (2021), "Stable and explainable deep learning damage prediction for prismatic cantilever steel beam", Comput. Ind., 125, 103359. https://doi.org/10.1016/j.compind.2020.103359
- Pai, S.G., Reuland, Y. and Smith, I.F. (2019), "Data-interpretation methodologies for practical asset-management", J. Sensor Actuator Networks, 8(2), 1-29. https://doi.org/10.3390/jsan8020036
- Parsa, A.B., Movahedi, A., Taghipour, H., Derrible, S. and Mohammadian, A.K. (2020), "Toward safer highways, application of XGBoost and SHAP for real-time accident detection and feature analysis", Accid. Anal. Preven., 136, 105405. https://doi.org/10.1016/j.aap.2019.105405
- Reuland, Y., Lestuzzi, P. and Smith, I.F. (2017), "Data-interpretation methodologies for non-linear earthquake response predictions of damaged structures", Front. Built Environ., 3, 43. https://doi.org/10.3389/fbuil.2017.00043
- Ribeiro, M.T., Singh, S. and Guestrin, C. (2016), ""Why should i trust you?" Explaining the predictions of any classifier", Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August, pp. 1135-1144. https://doi.org/10.1145/2939672.2939778
- Roth, A.E. (1988), The Shapley Value: Essays in Honor of Lloyd, S. Shapley. Ed., Cambridge University Press.
- Scholkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J. and Platt, J.C. (2000), "Support vector method for novelty detection", Adv. Neural Inform. Process. Syst., Vol. 12, pp. 582-588.
- Schreiber, T. and Schmitz, A. (1997), "Discrimination power of measures for nonlinearity in a time series", Phys. Rev. E, 55(5), 5443-5447. https://doi.org/10.1103/PhysRevE.55.5443
- Shapley, L.S. (1953), "17. A value for n-person games", In: Contributions to the Theory of Games (AM-28), Volume II, Princeton University Press, pp. 307-318. https://doi.org/10.1515/9781400881970-018
- Smith, I.F. (2016), "Studies of sensor data interpretation for asset management of the built environment", Front. Built Environ., 2, 1-9. https://doi.org/10.3389/fbuil.2016.00008
- Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W., Nadler, B.R. and Czarnecki, J.J. (2001), "A review of structural health monitoring literature: 1996-2001", LA-UR-02-2095.
- Strumbelj, E. and Kononenko, I. (2014), "Explaining prediction models and individual predictions with feature contributions", Knowl. Inform. Syst., 41(3), 647-665. https://doi.org/10.1007/s10115-013-0679-x
- Tibaduiza, D.A., Torres-Arredondo, M.A., Mujica, L.E., Rodellar, J. and Fritzen, C.P. (2013), "A study of two unsupervised data driven statistical methodologies for detecting and classifying damages in structural health monitoring", Mech. Syst. Signal Process., 41(1-2), 467-484. http://dx.doi.org/10.1016/j.ymssp.2013.05.020
- Tibaduiza, D., Torres-Arredondo, M.A., Vitola, J., Anaya, M. and Pozo, F. (2018), "A damage classification approach for structural health monitoring using machine learning", Complexity, 2018. https://doi.org/10.1155/2018/5081283
- Vilone, G. and Longo, L. (2020), "Explainable artificial intelligence: a systematic review", arXiv preprint arXiv:2006.00093. http://arxiv.org/abs/2006.00093.
- Welch, P. (1967), "The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms", IEEE Transact. Audio Electroacoust., 15(2), 70-73. https://doi.org/10.1109/TAU.1967.1161901
- Wilson, G.T. (2016), "Time Series Analysis: Forecasting and Control, 5th Edition, by George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel and Greta M. Ljung, 2015. Published by John Wiley and Sons Inc., Hoboken, New Jersey, pp. 712. ISBN: 978-1-118-67502-1", J. Time Series Anal., 37(5), 709-711. https://doi.org/10.1111/jtsa.12194
- Worden, K., Manson, G. and Fieller, N.R. (2000), "Damage detection using outlier analysis", J. Sound Vib., 229(3), 647-667. https://doi.org/10.1006/jsvi.1999.2514
- Ying, Y., Garrett Jr, J.H., Oppenheim, I.J., Soibelman, L., Harley, J.B., Shi, J. and Jin, Y. (2013), "Toward data-driven structural health monitoring: application of machine learning and signal processing to damage detection", J. Comput. Civil Eng., 27(6), 667-680. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000258
- Zgonnikov, A., Aleni, A., Piiroinen, P.T., O'Hora, D. and di Bernardo, M. (2017), "Decision landscapes: visualizing mouse-tracking data", Royal Soc. Open Sci., 4(11), 170482. https://doi.org/10.1098/rsos.170482
- Zhang, D., Qian, L., Mao, B., Huang, C., Huang, B. and Si, Y. (2018), "A data-driven design for fault detection of wind turbines using random forests and XGboost", IEEE Access, 6, 21020-21031. https://doi.org/10.1109/ACCESS.2018.2818678