• 제목/요약/키워드: decision trajectories

검색결과 21건 처리시간 0.022초

Multi-Cattle Tracking Algorithm with Enhanced Trajectory Estimation in Precision Livestock Farms

  • Shujie Han;Alvaro Fuentes;Sook Yoon;Jongbin Park;Dong Sun Park
    • 스마트미디어저널
    • /
    • 제13권2호
    • /
    • pp.23-31
    • /
    • 2024
  • In precision cattle farm, reliably tracking the identity of each cattle is necessary. Effective tracking of cattle within farm environments presents a unique challenge, particularly with the need to minimize the occurrence of excessive tracking trajectories. To address this, we introduce a trajectory playback decision tree algorithm that reevaluates and cleans tracking results based on spatio-temporal relationships among trajectories. This approach considers trajectory as metadata, resulting in more realistic and accurate tracking outcomes. This algorithm showcases its robustness and capability through extensive comparisons with popular tracking models, consistently demonstrating the promotion of performance across various evaluation metrics that is HOTA, AssA, and IDF1 achieve 68.81%, 79.31%, and 84.81%.

Correspondence Search Algorithm for Feature Tracking with Incomplete Trajectories

  • Jeong, Jong-Myeon;Moon, young-Shik
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.803-806
    • /
    • 2000
  • The correspondence problem is known to be difficult to solve because false positives and false negatives almost always exist in real image sequences. In this paper, we propose a robust feature tracking algorithm considering incomplete trajectories such as entering and/or vanishing trajectories. We solve the correspondence problem as the optimal graph search problem, by considering false feature points and by properly reflecting motion characteristics. The proposed algorithm finds a local optimal correspondence so that the effect of false feature points can be minimized in the decision process. The time complexity of the proposed graph search algorithm is given by O(mn) in the best case and O(m$^2$n) in the worst case, where m and n are the number of feature points in two consecutive frames. The proposed algorithm can find trajectories correctly and robustly, which has been shown by experimental results.

  • PDF

Temporal Search Algorithm for Multiple-Pedestrian Tracking

  • Yu, Hye-Yeon;Kim, Young-Nam;Kim, Moon-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권5호
    • /
    • pp.2310-2325
    • /
    • 2016
  • In this paper, we provide a trajectory-generation algorithm that can identify pedestrians in real time. Typically, the contours for the extraction of pedestrians from the foreground of images are not clear due to factors including brightness and shade; furthermore, pedestrians move in different directions and interact with each other. These issues mean that the identification of pedestrians and the generation of trajectories are somewhat difficult. We propose a new method for trajectory generation regarding multiple pedestrians. The first stage of the method distinguishes between those pedestrian-blob situations that need to be merged and those that require splitting, followed by the use of trained decision trees to separate the pedestrians. The second stage generates the trajectories of each pedestrian by using the point-correspondence method; however, we introduce a new point-correspondence algorithm for which the A* search method has been modified. By using fuzzy membership functions, a heuristic evaluation of the correspondence between the blobs was also conducted. The proposed method was implemented and tested with the PETS 2009 dataset to show an effective multiple-pedestrian-tracking capability in a pedestrian-interaction environment.

수집한 GPS데이터의 상호방향성을 이용한 경로데이터 조합방법 (A Combination Method of Trajectory Data using Correlated Direction of Collected GPS Data)

  • 구광민;박희민
    • 한국멀티미디어학회논문지
    • /
    • 제19권8호
    • /
    • pp.1636-1645
    • /
    • 2016
  • In navigation systems that use collected trajectory for routing, the number and diversity of trajectory data are crucial despite the infeasible limitation which is that all routes should be collected in person. This paper suggests an algorithm combining trajectories only by collected GPS data and generating new routes for solving this problem. Using distance between two trajectories, the algorithm estimates road intersection, in which it also predicts the correlated direction of them with geographical coordinates and makes a decision to combine them by the correlated direction. With combined and generated trajectory data, this combination way allows trajectory-based navigation to guide more and better routes. In our study, this solution has been introduced. However, the ways in which correlated direction is decided and post-process works have been revised to use the sequential pattern of triangles' area GPS information between two trajectories makes in road intersection and intersection among sets comprised of GPS points. This, as a result, reduces unnecessary combinations resulting redundant outputs and enhances the accuracy of estimating correlated direction than before.

A semi-supervised interpretable machine learning framework for sensor fault detection

  • Martakis, Panagiotis;Movsessian, Artur;Reuland, Yves;Pai, Sai G.S.;Quqa, Said;Cava, David Garcia;Tcherniak, Dmitri;Chatzi, Eleni
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.251-266
    • /
    • 2022
  • Structural Health Monitoring (SHM) of critical infrastructure comprises a major pillar of maintenance management, shielding public safety and economic sustainability. Although SHM is usually associated with data-driven metrics and thresholds, expert judgement is essential, especially in cases where erroneous predictions can bear casualties or substantial economic loss. Considering that visual inspections are time consuming and potentially subjective, artificial-intelligence tools may be leveraged in order to minimize the inspection effort and provide objective outcomes. In this context, timely detection of sensor malfunctioning is crucial in preventing inaccurate assessment and false alarms. The present work introduces a sensor-fault detection and interpretation framework, based on the well-established support-vector machine scheme for anomaly detection, combined with a coalitional game-theory approach. The proposed framework is implemented in two datasets, provided along the 1st International Project Competition for Structural Health Monitoring (IPC-SHM 2020), comprising acceleration and cable-load measurements from two real cable-stayed bridges. The results demonstrate good predictive performance and highlight the potential for seamless adaption of the algorithm to intrinsically different data domains. For the first time, the term "decision trajectories", originating from the field of cognitive sciences, is introduced and applied in the context of SHM. This provides an intuitive and comprehensive illustration of the impact of individual features, along with an elaboration on feature dependencies that drive individual model predictions. Overall, the proposed framework provides an easy-to-train, application-agnostic and interpretable anomaly detector, which can be integrated into the preprocessing part of various SHM and condition-monitoring applications, offering a first screening of the sensor health prior to further analysis.

불완전한 궤적을 고려한 강건한 특징점 추적 알고리즘 (A Robust Algorithm for Tracking Feature Points with Incomplete Trajectories)

  • 정종면;문영식
    • 대한전자공학회논문지SP
    • /
    • 제37권6호
    • /
    • pp.25-37
    • /
    • 2000
  • 특징점의 궤적은 인접한 프레임에 존재하는 특정점 사이의 대응관계로 정의할 수 있다. 실제 영상열에서 존재할 수 있는 잘못된 특징점(false positive, false negative)들은 특징점의 대응관계를 결정할 때 많은 문제를 야기하기 때문에 특징점의 대응관계를 찾는 문제는 어려운 문제로 알려져 있다. 본 논문에서는 새로운 궤적의 나타남, 사라짐 등 불완전한 궤적을 갖는 특징점들을 고려하는 특징점 추적기법을 제안한다. 정합 척도로서 가중치가 부여된 유클리디언 거리를 사용하고 특징점의 운동특성을 잘 반영할 수 있도록 그 가중치를 자동으로 조정한다. 대응점 탐색과정에서 치명적인 영향을 줄 수 있는 애매한 특징점이 존재하는 경우를 고려하여 인접한 프레임 사이의 정합점 결정을 그래프에 의한 최적 대응점 탐색문제로 해결한다. 제안하는 대응점 탐색 알고리즘은 실제 영상열에서 나타날 수 있는 잘못된 특징점들이 대응관계를 결정할 때 주는 영향을 최소화하기 위하여 국부 최적(local optimal)을 찾게되며, 인접한 두 프레임에 m, n개의 특징점이 주어졌을 경우, 최선의 경우 O(mn), 최악의 경우 O($m^2n$)의 계산량을 필요로 한다. 제안하는 알고리즘은 정합과정에서 잘못된 특징점을 고려하고, 특징점의 운동특성을 잘 반영함으로써 대량의 특징점을 추적하는데도 충분히 적용할 수 있음을 실험을 통해 확인하였다.

  • PDF

연속강하운용을 이용한 궤적 기반의 항공기 도착 관리 효과 분석 연구 (A Study on Effect Analysis of Trajectory-Based Arrival Management using Continuous Descent Operations)

  • 오은미;전대근
    • 한국항공운항학회지
    • /
    • 제30권4호
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, we propose trajectory-based arrival management using CDO (Continuos Descent Operations). The operational procedures with TBO (Trajectory-Based Operations) concept were established to allow aircraft and ground system to share the trajectories with each other in real time. The proposed operational concept was validated in the air traffic control simulation environment, which consists of controller working position, pseudo pilot system, air traffic generation system, and controllers' decision support system for arrival management using CDO. Simulation results compared with actual flight data indicate that proposed concept could improve the efficiency of traffic flow management in terms of total descending time and fuel consumption. And it was confirmed that if there is a system that can share and utilize the synchronized trajectory, it can be helpful to control arrival aircraft and apply CDO concept.

탄도미사일 궤적 시뮬레이션 모델을 이용한 방어영역 산출 및 응용 (Application and Determination of Defended Footprint Using a Simulation Model for Ballastic Missile Trajectory)

  • 홍동욱;임동순;최봉완
    • 한국군사과학기술학회지
    • /
    • 제21권4호
    • /
    • pp.551-561
    • /
    • 2018
  • Footprint is defined as ground area that is projected from the outer edges of the battle space protected by a defence system. This concept can be effectively used for making decisions on site selection of anti missile systems to defend against enemy's ballistic missiles. In this paper, simulations of ballistic missile trajectories based on various launch conditions are performed first and then the footprint is derived with engagement zone set as a boundary condition. Results of the simulation with various relative positions between the defense system and defended asset are also presented. The proposed method, in which the trajectories are generated based on launch point of the ballistic missile, has an advantage of approximating the defended area close to reality. Two applications are introduced in the present paper to describe how the derivation of defended area could be utilized in deployment decision of defense systems.

감시정찰 임무 자율화를 위한 무인기의 의사결정 시스템 (Decision-Making System of UAV for ISR Mission Level Autonomy)

  • 엄태원;이장우;김경태;양승구;김주영;김재경;김승균
    • 한국항공우주학회지
    • /
    • 제49권10호
    • /
    • pp.829-839
    • /
    • 2021
  • 무인기를 위한 자율 시스템은 임무 목표, 임무 상황, 무인기의 상태를 기반으로, 목표 달성을 위해 현재 수행할 행동을 결정하는 의사결정 능력을 가진다. 본 논문에서는 지형 충돌 위험이 있는 저고도 운용, 방문 순서를 변경하지 않아야 하는 항로점 집합, 임무 대상 객체의 위치 불확실성 등 현실적인 제약조건 하에서 감시정찰 임무를 자율적으로 수행할 수 있는 의사결정 시스템과 이러한 특성을 효과적으로 표현할 수 있는 임무 정의를 제시한다. 제안한 의사결정 시스템을 Hardware-In-the-Loop Simulation 환경에서 현실적인 임무 상황을 반영한 3종의 시나리오를 통해 검증한다. 무인기의 비행 경로와 임무 상황에서 의사결정 시스템이 선택한 행동을 시뮬레이션 결과로 제시하고, 그 결과를 논의한다.

Monitoring the Change of Technological Impacts of Technology Sectors Using Patent Information: the Case of Korea

  • Yoon, Janghyeok;Kim, Mujin;Kim, Doyeon;Kim, Jonghwa;Park, Hyunseok
    • Industrial Engineering and Management Systems
    • /
    • 제14권1호
    • /
    • pp.58-72
    • /
    • 2015
  • A primary concern of national R&D plans is to encourage technological development in private firms and research institutes. For effective R&D planning and program support, it is necessary to assess technological impacts that may exist both directly and indirectly among technology areas within the whole technology system; however, previous studies analyze only direct impacts among technologies, failing to capture both direct and indirect impacts. Therefore, this study proposes an approach based on decision-making trial and evaluation laboratory (DEMATEL) to identifying specific characteristics of technology areas, such as technological impact and degree of cause or effect (DCE). The method employs patent co-classification analysis to construct a technological knowledge flow matrix. Next, to capture both direct and indirect effects among technology areas, it incorporates the modified DEMATEL process into patent analysis. The method helps analysts assess the technological impact and DCE of technology areas, and observe their evolving trajectories over time, thereby identifying relevant technological implications. This study presents a case study using Korean patents registered during 2003-2012. We expect our analysis results to be helpful input for R&D planning, as well as the suggested approach to be incorporated into processes for formulating national R&D plans.