DOI QR코드

DOI QR Code

Mo-Al 복합 산화물의 질화반응 처리된 촉매상에서 암모니아 촉매 분해반응

Catalytic Ammonia Decomposition on Nitridation-Treated Catalyst of Mo-Al Mixed Oxide

  • 백서현 (충북대학교 화학공학과) ;
  • 윤경희 (충북대학교 화학공학과) ;
  • 신채호 (충북대학교 화학공학과)
  • Baek, Seo-Hyeon (Department of Chemical Engineering, Chungbuk National University) ;
  • Youn, Kyunghee (Department of Chemical Engineering, Chungbuk National University) ;
  • Shin, Chae-Ho (Department of Chemical Engineering, Chungbuk National University)
  • 투고 : 2021.09.16
  • 심사 : 2021.10.01
  • 발행 : 2022.02.01

초록

MoO3 비율을 10-50 중량비로 변화하여 제조한 Mo-Al 복합 산화물 상에서 소성 후 승온 질화반응을 통하여 얻은 Mo-Al 질화물 상에서 암모니아 분해반응에서의 촉매 활성을 검토하였다. 제조된 촉매의 물리·화학적 특성을 알아보기 위하여 N2 흡착분석, X-선 회절분석(XRD), X-선 광전자분석법(XPS), 수소 승온환원(H2-TPR), 투과전자현미경(TEM) 분석을 수행하였다. 600 ℃에서 소성 후 Mo-Al 복합산화물은 γ-Al2O3와 Al2(MoO4)3 결정상을 나타냈으며 질화반응 후의 질화물은 비정형 형태를 보여주었다. 질화반응 후의 비표면적은 MoO3의 위상전환반응에 의해 Mo 질화물 형성으로 인해 증가하였으며, Mo 질화물이 γ-Al2O3에 담지된 형태를 보여주었다. 암모니아 분해반응에서의 촉매 활성은 40 wt% MoO3가 가장 좋은 활성을 보여주었고, 질화반응 시간이 증가함에 따라 활성이 증가하였으며 이에 따라 활성화에너지 감소 효과를 나타냈다.

Catalytic activity in ammonia decomposition reaction was studied on Mo-Al nitride obtained through temperature programmed nitridation of calcined Mo-Al mixed oxide prepared by varying the MoO3 quantity in the range of 10-50 wt%. N2 sorption analysis, X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS) and H2-temperature programmed reduction (H2-TPR), and transmission electron microscopy (TEM) to investigate the physicochemical properties of the prepared catalyst were performed. After calcination at 600 ℃, the XRD of Mo-Al oxide showed γ-Al2O3 and Al2(MoO4)3 phases, and the nitride after nitridation showed an amorphous form. The specific surface area after nitridation by topotactic transformation of MoO3 to nitride was increased due to the formation of Mo nitride, and the Mo nitride was observed to be supported on γ-Al2O3. As for the catalytic activity in the ammonia decomposition reaction, 40 wt% MoO3 showed the best activity, and as the nitridation time increases, the activity increased, and thus the activation energy decreased.

키워드

과제정보

이 논문은 과학기술정보통신부에서 지원되는 한국연구재단의 C1 가스 리파이너리 사업의 재정지원(2020M3D3A1A010289)에 의해 이루어졌음에 감사드립니다.

참고문헌

  1. Bell, T. E. and Torrente-Murciano, L., "H2 Production via Ammonia Decomposition Using Non-Noble Metal Catalysts: A Review," Top. Catal., 59, 1438-1457(2016). https://doi.org/10.1007/s11244-016-0653-4
  2. Mukherjee, S., Devaguptapu, S. V., Sviripa, A., Carl R.F. Lund, C. R. F., and Wu, G., "Low-temperature Ammonia Decomposition Catalysts for Hydrogen Generation," Appl. Catal. B-Environ., 226, 162-181(2018). https://doi.org/10.1016/j.apcatb.2017.12.039
  3. Lamb, K. E., Dolan, M. D., and Kennedy, D. F., "Ammonia for Hydrogen Storage; A Review of Catalytic Ammonia Decomposition and Hydrogen," Int. J. Hydrog. Energy, 44(7), 3580-3593(2019). https://doi.org/10.1016/j.ijhydene.2018.12.024
  4. Le, T. A., Do, Q. C., Kim, Y., Kim, T.-H., and Chae, H.-J., "A Review on the Recent Developments of Ruthenium and Nickel Catalysts for COx-free H2 Generation by Ammonia Decomposition," Korean J. Chem. Eng., 38(6), 1087-1103(2021). https://doi.org/10.1007/s11814-021-0767-7
  5. Schuth, F., Palkovits, R., Schlogl, R. and Su, D. S., "Ammonia as a Possible Element in An Energy Infrastructure: Catalysts for Ammonia Decomposition," Energy Environ. Sci., 5 6278-6289 (2012). https://doi.org/10.1039/C2EE02865D
  6. Mukherjee, S., Devaguptapu, S. V., Sviripa, A., Lund, C. R. F. and Wu, G., "Low-temperature Ammonia Decomposition Catalysts for Hydrogen Generation," Appl. Catal. B-Environ., 226, 162-181 (2018). https://doi.org/10.1016/j.apcatb.2017.12.039
  7. Makepeace, J. W., Wood, T. J., Hunter, H. M. A., Jones, M. O. and David, W. I. F., "Ammonia Decomposition Catalysis Using Non-stoichiometric Lithium Imide," Chem. Sci., 6, 3805-3815 (2015). https://doi.org/10.1039/C5SC00205B
  8. Guo, J., Wang, P., Wu, G., Wu, A., Hu, D., Xiong, Z., Wang, Yu, J., P., Chang, F., Chen, Z. and Chen, P., "Lithium Imide Synergy With 3d Transition-metal Nitrides Leading to Unprecedented Catalytic Activities for Ammonia Decomposition," Angew. Chem.- Int. Edit., 54, 2950-2954(2015). https://doi.org/10.1002/anie.201410773
  9. Hajduk, S., Dasireddy, V. D. B. C., Likozar, B., Drazic, G. and Orel Z. C., "COx-free Hydrogen Production via Decomposition of Ammonia over Cu-Zn-based Heterogeneous Catalysts and Their Activity/stability," Appl. Catal. B-Environ., 211, 57-67(2017). https://doi.org/10.1016/j.apcatb.2017.04.031
  10. Huo, L., Han, X., Zhang, L., Liu, B., Gao, R., Cao B., Wang, W.- W., Jia, C.-J., Liu, K., Liu, J. and Zhang, J., "Spatial Confinement and Electron Transfer Moderating Mo-N Bond Strength for Superior Ammonia Decomposition Catalysis," Appl. Catal. B-Environ., 294, 120254(2021). https://doi.org/10.1016/j.apcatb.2021.120254
  11. Huo, L., Liu, B., Li, H., Cao, B., Hu, X.-C., Fu, X.-P., Ji, C. and Zhang, J., "Component Synergy and Armor Protection Induced Superior Catalytic Activity and Stability of Ultrathin Co-Fe Spinel Nanosheets Confined in Mesoporous Silica Shells for Ammonia Decomposition Reaction," Appl. Catal. B-Environ., 253, 121-130 (2019). https://doi.org/10.1016/j.apcatb.2019.04.053
  12. Morlanes, N., Sayas, S. and Shterk, G., "Development of a Ba-CoCe Catalyst for the Efficient and Stable Decomposition of Ammonia," Catal. Sci. Techn., 11, 3014-3024 (2021). https://doi.org/10.1039/D0CY02336A
  13. Huang, C. Yu, Y., Tang, X., Liu Z., Zhang, J., Ye, C., Ye, Y. and Zhang, R., "Hydrogen Generation by Ammonia Decomposition over Co/CeO2 Catalyst: Influence of Support Morphologies," Appl. Surf. Sci., 5321, 147335(2020).
  14. Wang, Y., Kunz, M. R., Siebers, S., Rollins, H., Gleaves, J., Yablonsky, G. and Fushimi, R., "Transient Kinetic Experiments within the High Conversion Domain: The Case of Ammonia Decomposition," Catalysts, 9, 104(2019). https://doi.org/10.3390/catal9010104
  15. Fu, E., Qiu, Y., Lu, H., Wang, S., Liu, L., Feng, H., Yang, Y., Wu, Z., Xie, Y., Gong, F. and Xiao, R., "Enhanced NH3 Decomposition for H2 Production over Bimetallic M(M=Co, Fe, Cu)Ni/Al2O3," Fuel Proc. Tech., 221, 106945(2021). https://doi.org/10.1016/j.fuproc.2021.106945
  16. Maleki, H., Fulton, M. and Bertola, V., "Kinetic Assessment of H2 Production from NH3 Decomposition over CoCeAlO Catalyst in a Microreactor: Experiments and CFD Modelling," Chem. Eng. J., 411, 128595(2021). https://doi.org/10.1016/j.cej.2021.128595
  17. Feng, J., Liu, L., Ju, X., Wang, J., Zhang, X., He, T., and Chen, P., "Highly Dispersed Ruthenium Nanoparticles on Y2O3 as Superior Catalyst for Ammonia Decomposition," ChemCatChem, 13, 1552(2012).
  18. Bajus, S., Agel, F., Kusche, M., Bhriain, N. N. and Wasserscheid, P., "Alkali Hydroxide-modified Ru/γ-Al2O3 Catalysts for Ammonia Decomposition," Appl. Catal. A-Gen., 510, 189-195(2016). https://doi.org/10.1016/j.apcata.2015.11.024
  19. Nagaoka, K., Eboshi, T., Takeishi, Y., Tasaki, R., Honda, Imamura, K. and Sato, K., "Carbon-free H2 Production from Ammonia Triggered at Room Temperature with An Acidic RuO2/γ-Al2O3 Catalyst," Sci. Adv., 3, e1602747(2017). https://doi.org/10.1126/sciadv.1602747
  20. Chen, Y.-L., Juang, C.-J, and Chen, Y.-C., "The Effects of Promoter Cs Loading on the Hydrogen Production from Ammonia Decomposition Using Ru/C Catalyst in a Fixed-Bed Reactor," Catalysts, 11(3), 321(2021). https://doi.org/10.3390/catal11030321
  21. Le, T. A., Kim, Y., Kim, J. W., Lee, S.-U., Kim, J.-R., Kim, T.- W., Lee, Y.-J. and Chae, H.-J., "Ru-supported Lanthania-ceria Composite as An Efficient Catalyst for COx-free H2 Production from Ammonia Decomposition," Appl. Catal. B-Environ., 285, 119831(2021). https://doi.org/10.1016/j.apcatb.2020.119831
  22. Lucentini, I., Casanovas, A. and Llorca, J., "Catalytic Ammonia Decomposition for Hydrogen Production on Ni, Ru and Ni-Ru Supported on CeO2 ", Int. J. Hydrog. Energy, 44, 12693-12707(2019). https://doi.org/10.1016/j.ijhydene.2019.01.154
  23. Lucentini, I., Colli, G. G., Luzi, C. D., Serrano, I., Martinez, O. M. and Llorca, J., "Catalytic Ammonia Decomposition over Ni-Ru Supported on CeO2 for Hydrogen Production: Effect of Metal Loading and Kinetic Analysis," Appl. Catal. B-Environ., 286, 119896(2021). https://doi.org/10.1016/j.apcatb.2021.119896
  24. Wang, Z., Qu, Y., Shen, X. and Cai, Z., "Ruthenium Catalyst Supported on Ba Modified ZrO2 for Ammonia Decomposition to COx-free Hydrogen," Int. J. Hydrog. Energy, 44, 7300-7307 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.235
  25. Li, G., Kanezashi M. and Tsuru, T., "Catalytic Ammonia Decomposition over High-Performance Ru/Graphene Nanocomposites for Efficient COx-Free Hydrogen Production,"Catalysts, 7(1), 23(2017). https://doi.org/10.3390/catal7010023
  26. Tang, H., Wang, Y., Zhang, W. Liu, Z., Li, L., Han, W. and Li, Y., "Catalytic Activity of Ru Supported on SmCeOx for Ammonia Decomposition: The Effect of Sm Doping," J. Solid State Chem., 295, 121946(2021). https://doi.org/10.1016/j.jssc.2020.121946
  27. Maleki, H., Fulton, M. and Bertola, V., "Kinetic Assessment of H2 Production from NH3 Decomposition over CoCeAlO Catalyst in a Microreactor: Experiments and CFD Modelling,"Chem. Eng. J., 411, 128595(2021). https://doi.org/10.1016/j.cej.2021.128595
  28. Zhang, X., Liu, L., Feng, J., Ju, X., Wang, J, He, T. and Chen, P., "Metal-support Interaction-modulated Catalytic Activity of Ru Nanoparticles on Sm2O3 for Efficient Ammonia Decomposition," Catal. Sci. Techn., 11, 2915-292321(2021). https://doi.org/10.1039/D1CY00080B
  29. Pinzon, M., Romero, A., de Lucas Consuegra, A., de la Osa, A. R. and Sanchez, P., "Hydrogen Production by Ammonia Decomposition over Ruthenium Supported on SiC Catalyst," J. Ind. Eng. Chem., 94, 326-335(2021), https://doi.org/10.1016/j.jiec.2020.11.003
  30. Podila, S., Zaman, S. F., Driss, H., Alhamed, Al-Zahranib, Y. A. and Petrov, L. A., "Hydrogen Production by Ammonia Decomposition Using High Surface Area Mo2N and Co3Mo3N Catalysts," Catal. Sci. Technol., 6, 1496-1506(2016). https://doi.org/10.1039/C5CY00871A
  31. Baek, S.-H., Yun, K., Kang, D.-C., An, H., Park, M. B., Shin, C.- H. and Min, H.-K., "Characteristics of High Surface Area Molybdenum Nitride and Its Activity for the Catalytic Decomposition of Ammonia," Catalysts, 11(2), 192(2021). https://doi.org/10.3390/catal11020192
  32. Srifa, A., Okura, K., Okanishi, T., Muroyama, H., Matsui, T. and Eguchi, K., "COx-free Hydrogen Production via Ammonia Decomposition over Molybdenum Nitride-based Catalysts," Catal. Sci. Technol., 6, 7495-7504(2016). https://doi.org/10.1039/C6CY01566B
  33. Jolaoso, L. A., Zaman, S. F., Podila, S., H. Driss, H., Al-Zahrani, A. A., Daous, M. A. and Petrov, L., "Ammonia Decomposition over Citric Acid Induced γ-Mo2N and Co3Mo3N Catalysts," Int. J. Hydrog. Energy, 43, 4839-4844(2018). https://doi.org/10.1016/j.ijhydene.2018.01.092
  34. Lorenzut, B., Montini, T., Bevilacqua, M. and Fornasiero, P., "FeMo-based Catalysts for H2 Production by NH3 Decomposition," Appl. Catal. B-Environ., 125, 409-417(2012). https://doi.org/10.1016/j.apcatb.2012.06.011
  35. Dewangan, K., Patil, S. S., Joag, D. S., More, M. A. and N. S. Gajbhiye, N. S., "Topotactical Nitridation of MoO3 Fibers to γ-Mo2N Fibers and Its Field Emission Properties," J. Phys. Chem. C, 114, 14710-14715(2010). https://doi.org/10.1021/jp103008f
  36. Colling, C. W., Choi, J.-G. and Thomson, L. T., "Molybdenum Nitride Catalysts II. H2 Temperature Programmed Reduction and NH3 Temperature Programmed Desorption," J. Catal., 160, 35-42(1996). https://doi.org/10.1006/jcat.1996.0121
  37. Choi, J.-G., Brenner, J. R., Colling, C. W., Demczyk, B. G., Dunning, J. L. and Thomson, L. T., "Synthesis and Characterization of Molybdenum Nitride Hydrodenitrogenation Catalysts," Catal. Today, 15, 201-222(1992). https://doi.org/10.1016/0920-5861(92)80176-N
  38. Colling, C. W. and Thomson, L. T., "The structure and Function of Supported Molybdenum Nitride Hydrodenitrogenation Catalysts," J. Catal., 146, 193-203(1994). https://doi.org/10.1016/0021-9517(94)90022-1
  39. Zhang, D., Liu, W.-Q., Liu, Y.-A., Etim, U. J., Liu, X.-M. and Yan, Z.-F., "Pore Confinement Effect of MoO3/Al2O3 Catalyst for Deep Hydrodesulfurization," Chem. Eng. J., 230, 706-717(2017).
  40. Meng, D., Wang, B., Yu, W., Z. Li, Z. and Ma, X., "Effect of Citric Acid on MoO3/Al2O3 Catalysts for Sulfur Resistant Methanation," Catalysts, 7, 151(2017). https://doi.org/10.3390/catal7050151
  41. Taghili, N., Manteghian, M. and Jafar, A., "Novel Preparation of MoO3/γ-Al2O3 Nanocatalyst: Application, in Extra-heavy Oil Visbreaking at Atmospheric Pressure," Appl. Nanosci., 10, 1603-1613(2020). https://doi.org/10.1007/s13204-020-01271-8
  42. Giordano, N., Bart, J. C. T., Vaghi, A., Castelian, A. and Martinotti, G., "Structure and Catalytic Activity of MoO3.Al2O3 Systems I. Solid-State Properties of Oxidized Catalysts," J. Catal., 36 81-92(1975). https://doi.org/10.1016/0021-9517(75)90012-3
  43. Groen, J. C., Peffer, L. A. A. and Perez-Ramirez, J., "Pore Size Determination in Modified Micro- and Mesoporous Materials. Pitfalls and Limitations in Gas Adsorption Data Analysis," Microp. Mesop. Mater., 60, 1-17(2003). https://doi.org/10.1016/S1387-1811(03)00339-1