DOI QR코드

DOI QR Code

Control of peak floor accelerations of buildings under wind loads using tuned mass damper

  • Acosta, Juan (Facultad de Ingenieria, Universidad Autonoma de Sinaloa) ;
  • Bojorquez, Eden (Facultad de Ingenieria, Universidad Autonoma de Sinaloa) ;
  • Bojorquez, Juan (Facultad de Ingenieria, Universidad Autonoma de Sinaloa) ;
  • Reyes-Salazar, Alfredo (Facultad de Ingenieria, Universidad Autonoma de Sinaloa) ;
  • Payan, Omar (Department of Mechanical and Mechatronic Engineering, Tecnologico Nacional de Mexico Campus Culiacan) ;
  • Barraza, Manuel (Facultad de Ingenieria, Arquitectura y Diseno, Universidad Autonoma de Baja California) ;
  • Serrano, Juan (Facultad de Ingenieria, Universidad Autonoma de Sinaloa)
  • Received : 2020.01.29
  • Accepted : 2021.06.11
  • Published : 2022.01.10

Abstract

Due to the frequency and magnitude of some loads produced by gusts of turbulent wind, building floors can develop lateral displacements and significant accelerations which can produce strong inertial forces on structural, non-structural elements and occupants. A device that can help to reduce the floor accelerations is the well-known Tuned Mass Damper (TMD); however, nowadays there is no enough information about its capacity in order to dissipate energy of turbulent wind loads. For this reason, in this paper different buildings with and without TMD are modeled and dynamically analyzed under simulated wind loads in order to study the reduction of peak floor accelerations. The results indicate that peak floor accelerations can be reduced up to 40% when TMD are incorporated in the buildings, which demonstrated that the Tuned Mass Damper is an efficient device to reduce the wind effects on tall buildings.

Keywords

Acknowledgement

The scholarship for PhD studies given by El Consejo Nacional de Ciencia y Tecnologia to the PhD students and the support under grant Ciencia Basica 287103 to the second and third authors are appreciated. Financial support also was received from the Universidad Autonoma de Sinaloa under grant PROFAPI 2022 and from Secretaria de Educacion Publica under grant PRODEP.

References

  1. Barbat, A.H., Rodellar, J. and Almansa, F.L. (1987), "Calculo de la respuesta dinamica de estructuras mediante un procedimiento de estado", Revista Internacional de Metodos Numericos Para Calculo y Diseno en Ingenieria, 3(3), 243-261.
  2. Bhandari, A., Datta, G. and Bhattacharjya, S. (2018), "Efficient wind fragility analysis of RC high rise building through metamodelling", Wind Struct., 27(3), 199-211. https://doi.org/10.12989/was.2018.27.3.199.
  3. Bojorquez, E., Chavez, R., Reyes-Salazar, A., Ruiz, S. and Bojorquez, J. (2017), "A new ground motion intensity measure IB", Soil Dyn. Earthq. Eng., 99, 97-107. http://doi.org/10.1016/j.soildyn.2017.05.011.
  4. Chay, M.T., Albermani, F. and Wilson, R. (2006), "Numerical and analytical simulation of downburst wind load", Eng. Struct., 28(2), 240-254. https://doi.org/10.1016/j.engstruct.2005.07.007.
  5. Chopra, K.A. (2012), Dynamics of Structures: Theory and Applications to Earthquake Engineering, 4th Edition, Prentice-Hall, Inc., United States.
  6. Connor, J.J. (2002), Introduction to Structural Motion Control, 1st Edition, Prentice Hall Pearson Education, Incorporated, Michigan, USA.
  7. Den Hartog, J.P. (1956), Mechanical Vibrations, 4th Edition, McGraw-Hill, New York, USA.
  8. Dong, N. and Chi, N. (2003), "A selection of parameters of tuned mass damper for multi-degree-of-freedom system subjected to second order coloured noise excitation", Viet. J. Mech., 25(2), 65-76. http://doi.org/10.15625/0866-7136/25/2/6579.
  9. Espinoza, J.L., Pozos-Estrada, A. and Gomez, R. (2010), "Masas resonantes para mitigar los efectos eolicos", XVII Congreso Nacional de Ingenieria Estructural, Leon, Guanajuato, Mexico.
  10. Ferreira, N., Barros, R. and Delgado, R. (2011), "Comparisons of a tall buildings wind response with and without a TMD", 3rd International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Corfu, Greece, May.
  11. Frahm, H. (1909), "Device for damped vibrations of bodies", U.S. Patent No. 989,958.
  12. Handayani, N., Kusumastuti, D. and Rildova (2008), "An experimental study on MTMD to improve structural performance under dynamic loading", The 14th World Conference on Earthquake Engineering, Beijing, China, October.
  13. Holmes, J.D. (2001), Wind Loading of Structures, 1st Edition, Taylor & Francis e-Library, London, England.
  14. Horne, P. and Burton, H. (2003), "Investigation of code seismic force levels for hospital equipment", Report ATC-29-2, Seminar on Seismic Design, Retrofit and Nonstructural Components, Applied Technology Council, Redwood City, CA.
  15. Huang, G., Liu, W., Zhou, Q., Yan, Z. and Zuo, D. (2018), "Numerical study for downburst wind and its load on high-rise building", Wind Struct., 27(2), 89-100. https://doi.org/10.12989/was.2018.27.2.089.
  16. Ioi, T. and Ikeda, K. (1978), "On the dynamic vibration damped absorber of the vibration system", Bull. JPN Soc. Mech. Eng., 21(151), 64-71. https://doi.org/10.1299/jsme1958.21.64.
  17. Kareem, A. (1992), "Dynamic response of high-rise buildings to stochastic wind loads", J. Wind Eng. Indus. Aerodyn., 42(1-3), 1101-1112. https://doi.org/10.1016/0167-6105(92)90117-S.
  18. Kehoe, B.E. and Freeman, S.A. (1998), "A critical of procedures for calculating seismic design forces for nonstructural elements", Report ATC-29-1, Seminar on Seismic Design, Retrofit and Nonstructural Components, Applied Technology Council, Redwood City, CA.
  19. Lewandowski, R. and Grzymislawska, J. (2010), "Dynamic analysis of structures with multiple tuned mass dampers", J. Civil Eng. Manage., 15(1), 77-86. http://doi.org/10.3846/1392-3730.2009.15.77-86.
  20. Li, Y. and Kareem, A. (1993a), "Simulation of multivariate random processes: Hybrid DFT and digital filtering approach", J. Eng. Mech., 199(5), 1078-1098. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:5(1078).
  21. Li, Y. and Kareem, A. (1993b), "Parametric modeling of stochastic wave effects on offshore platforms", Appl. Ocean Res., 15(2), 63-83. https://doi.org/10.1016/0141-1187(93)90022-P.
  22. Lin, C.C., Wang, J.F. and Ueng, J.M. (2000), "Vibration control identification of seismically excited m.d.o.f. structure-PTMD systems", J. Sound Vib., 240(1), 87-115. https://doi.org/10.1006/jsvi.2000.3188.
  23. Lu, C.L., Li, Q.S., Huang, S.H. and Tuan, A.Y. (2016), "Evaluation of wind loads and wind induced responses of a super-tall building by large eddy simulation", Wind Struct., 23(4), 313-350. https://doi.org/10.12989/was.2016.23.4.313.
  24. Luft, R.W. (1979), "Optimal tuned mass dampers for buildings", J. Struct. Div., 105(12), 2766-2772. https://doi.org/10.1061/JSDEAG.0005323.
  25. McNamara, R.J. (1977), "Tuned mass dampers for buildings", J. Struct. Eng., 103(9), 1785-1798. https://doi.org/10.1061/JSDEAG.0004721.
  26. MDOC-DV (2008), Manual de Diseno de Obras Civiles: Diseno Por Viento, Comision Federal de Electricidad, Mexico.
  27. Meseguer R.G., Sanz A.A., Pindado C.S., Franchini S. and Rodrigo G.A. (2013), Aerodinamica Civil: Efectos del Viento en Edificaciones y Estructuras, 2nd Edition, Editorial Garceta, Madrid, Espana.
  28. Mohite, A.A. and Patil, G.R. (2015), "Earthquake anakysis of tall building with tuned mass damper", J. Mech. Civil Eng., 113-122.
  29. Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Div., 85(3), 67-94. https://doi.org/10.1061/JMCEA3.0000098.
  30. Parulekar, Y.M. and Gudheti, R.R. (2011), "Passive response control system for seismic response reduction: A state-of-the-art review", Int. J. Struct. Stab. Dyn., 9(1), 151-177. https://doi.org/10.1142/S0219455409002965.
  31. Payan-Serrano, O., Bojorquez, E. and Pozos-Estrada, A. (2014), "Simulacion del viento por representacion espectral y sus efectos en edificios de cortante", Universidad Autonoma de Sinaloa, Culiacan, Sinaloa, Mexico.
  32. Payan-Serrano, O., Bojorquez, E., Reyes-Salazar, A. and Ruiz-Garcia, J. (2019), "Estimation of peak wind response of building using regression analysis", Wind Struct., 29(2), 129-137. https://doi.org/10.12989/was.2019.29.2.129.
  33. Pozos-Estrada, A. (2018), "A simple procedure to evaluate the wind-induced acceleration in tall buildings: an application to Mexico", Wind Struct., 27(5), 337-345. https://doi.org/10.12989/was.2018.27.5.337.
  34. Pozos-Estrada, A. and Hong, H.P. (2015), "Sensitivity analysis of the effectiveness of tuned mass dampers to reduce the wind-induced torsional responses", Latin Am. J. Solid. Struct., 12(13), 1679-7825. https://doi.org/10.1590/1679-78251856.
  35. Pozos-Estrada, A., Hong, H.P. and Galsworthy, J.K. (2011), "Reliability of structures with tuned mass dampers under wind-induced motion: A serviceability consideration", Wind Struct., 14(2), 113-131. https://doi.org/10.12989/was.2011.14.2.113.
  36. Samaras, E., Shinzuka, M. and Tsurui, A. (1985), "ARMA representation of random processes", J. Eng. Mech., 111(3), 449-461. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:3(449).
  37. Shinozuka, M. (1974), "Digital simulation of random processes in engineering mechanics with the aid of FFT technique (Fast Fourier Transformation)", Stochastic Problems in Mechanics, 277-286.
  38. Shinozuka, M. and Jan, C.M. (1972), "Digital simulation of random processes and its applications", J. Sound Vib., 25(1), 111-128. https://doi.org/10.1016/0022-460X(72)90600-1.
  39. Sladek, J.R. and Klinger, R.E. (1983), "Effect of tuned mass dampers of seismic response", J. Struct. Eng., 109(8), 2004-2009. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:8(2004).
  40. Tuan, A. and Shang, G. (2014), "Vibration control in a 101-storey building using a tuned mass damper", J. Appl. Sci. Eng., 17(2), 141-156. http://doi.org/10.6180/jase.2014.17.2.05.
  41. Warburton, G.B. (1982), "Optimum absorber parameters for various combinations of response and excitation parameters", Earthq. Eng. Struct. Dyn., 10(3), 381-401. https://doi.org/10.1002/eqe.4290100304.
  42. Warburton, G.B. and Ayorinde E.O. (1980), "Optimum absorber parameters for simple system", Earthq. Eng. Struct. Dyn., 8(3), 197-217. https://doi.org/10.1002/eqe.4290080302.
  43. Webster, A. and Vaicaitis, R. (1992), "Application of tuned mass dampers to control vibrations of composite floor system", Eng. J. Am. Inst. Steel Constr., 29(3), 116-124.
  44. Xu, Y.L. (2013), Wind Effects on Cable-Supported Bridges, 1st Edition, John Wiley and Sons Singapore Pte. Ltd, Singapore.
  45. Yang, J. (1972), "Simulation of random envelope processes", J. Sound Vib., 25(1), 73-85. https://doi.org/10.1016/0022-460X(72)90207-6.
  46. Yang, J. (1973), "On the normality and accuracy of simulated random processes", J. Sound Vib., 26(3), 417-428. https://doi.org/10.1016/S0022-460X(73)80196-8.