References
- C. Corrado & S. Fontana. (2020). Hypoxia and HIF signaling: One axis with divergent effects. International Journal of Molecular Sciences, 21(16), 5611-5627. https://doi.org/10.3390/ijms21165611
- G. Semenza. (2012). Hypoxia-inducible factors in physiology and medicine. Cell. 148(3), 399-408. https://doi.org/10.1016/j.cell.2012.01.021
- B. Keith, R. S. Johnson & M. C. Simon. (2011). HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nature Review Cancer, 12(1), 9-22. https://doi.org/10.1038/nrc3183
- C. J. Hu et al. (2003). Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation. Molecular and Cellular Biology., 23(24), 9361-9374. https://doi.org/10.1128/MCB.23.24.9361-9374.2003
- V. Wang et al. (2005). Differential gene upregulation by hypoxia-inducible factor -1α and hypoxia-inducible factor-2α in HEK293T cells. Cancer Research, 65(8), 3299-3306. https://doi.org/10.1158/0008-5472.CAN-04-4130
- F. Hajizadeh et al. (2019). Hypoxia inducible factors in the tumor microenvironment as therapeutictargets of cancer stem cells. Life Sciences, 237(116952), 1-13. https://doi.org/10.1016/j.lfs.2019.116952
- N. Albadari, S. Deng & W. Li. (2019). The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy. Expert Opinion on Drug Discovery, 14(7), 667-682. https://doi.org/10.1080/17460441.2019.1613370
- M. Serocki et al. (2018). miRNAs regulate the HIF switch during hypoxia: a novel therapeutic target. Angiogenesis, 21(2), 183-202. https://doi.org/10.1007/s10456-018-9600-2
- M. Ding et al. (2013). Y. I. Kim. (2017). Regulation of hypoxia-inducible factor 2-a is essential for integrity of the glomerular barrier. American Journal of Physiology-Renal Physiology, 304(1), F120-126. https://doi.org/10.1152/ajprenal.00416.2012
- C. M. Girgis et al. (2012). Novel links between HIFs, type 2 diabetes, and metabolic syndrome. Trends in Endocrinology & Metabolism, 23(8), 372-80. https://doi.org/10.1016/j.tem.2012.05.003
- S. Yang et al. (2010). Hypoxia-inducible factor2alpha is a catabolic regulator of osteoarthritic cartilage destruction. Nature Medicine, 16(6), 687-694. https://doi.org/10.1038/nm.2153
- L. Yu et al. (2020). Oxygen therapy alleviates hepatic steatosis by inhibiting hypoxia-inducible factor-2α Journal of Endocrinology. 246(1), 57-67. https://doi.org/10.1530/JOE-19-0555
- J. E. Gunton. (2020). Hypoxia-inducible factors and diabetes. J Clin Invest, 130(10), 5063-5073. https://doi.org/10.1172/jci137556
- A. Didangelos et al. (2012). Novel role of ADAMTS-5 protein in proteoglycan turnover and lipoprotein retention in atherosclerosis. Journal of Biological Chemistry, 287(23), 19341-19345 https://doi.org/10.1074/jbc.C112.350785
- S. M. Siddiqui, A. Salahuddin & A. Azam. (2012). Synthesis, characterization and antiamoebic activity of some hydrazone and azole derivatives bearing pyridyl moiety as a promising heterocyclic scaffold. European Journal of Medicinal Chemistry, 49, 411-416. https://doi.org/10.1016/j.ejmech.2012.01.030
- S. Rollas & S. G. Kucukguzel. (2007). Biological activities of hydrazone derivatives. Molecules 12(8), 1910-39. https://doi.org/10.3390/12081910
- M. P. Mattson. (2008). Hormesis defined. Ageing Research Review, 7(1), 1-7. https://doi.org/10.1016/j.arr.2007.08.007
- D. Velmurugan, R. Pachaiappan & C Ramakrishnan. (2020). Recent Trends in Drug Design and Discovery. Currrent Topics in Medicinal Chemistry, 20(19), 1761-1770. https://doi.org/10.2174/1568026620666200622150003
- National Library of Medicine, National Center for Biotechnology Information (Bethesda, MD, USA). (Dec. 15, 2021). 6-(hydroxymethyl)-N'-[(2-hydroxy-1-naphthyl)meth ylene]nicotinohydrazide. https://pubchem.ncbi.nlm.nih.gov/compound/135403085
- National Library of Medicine, National Center for Biotechnology Information (Bethesda, MD, USA). (Dec. 5, 2021) . N'-[(Z)-(2-oxonaphthalen-1-ylidene)methyl]pyridine-4-carbohydrazide. https://pubchem.ncbi.nlm.nih.gov/compound/4491.