DOI QR코드

DOI QR Code

Apriori 알고리즘을 활용한 학습자의 성별과 학교급에 따른 온라인 수업 유형 선호도 분석

An analysis of students' online class preference depending on the gender and levels of school using Apriori Algorithm

  • Kim, Jinhee (Department of Education, Seoul National University) ;
  • Hwang, Doohee (Cheonan Institute of Science and Technology Platform) ;
  • Lee, Sang-Soog (Department of Public Administration, Korea University)
  • 투고 : 2021.10.29
  • 심사 : 2022.01.20
  • 발행 : 2022.01.28

초록

본 연구는 학습자 특성(성별 및 학교 급)에 따른 온라인 수업 유형 선호도를 파악하고자 하는데 그 목적이 있다. 이를 위하여 전국 17개 지역의 초·중·고등학교 학생 4,803명을 대상으로 설문조사를 실시하였다. 이후, 유효데이터인 4,524명 학생들의 성별 및 학교급을 기반한 온라인 수업 유형 선호도 패턴을 확인하기 위해 Apriori 알고리즘을 이용한 연관규칙 분석을 실시하였다. 연구결과 초등 7개, 중등 4개, 고등 5개 등 총 16개의 규칙을 도출하였으며, 학교급과 무관하게 여학생들은 메이커활동 중심 수업을, 초·중 남학생은 가상체험중심 수업을 공통적으로 선호하였다. 보다 구체적으로, 초등학교 남학생은 SW중심수업을, 여학생은 메이커활동 중심 수업을 선호하였으며, 중학생의 경우 남여 모두 가상체험중심 수업을 선호하였다. 반면 고등학생은 교과별 강의중심에 대한 선호도가 높았다. 이러한 연구결과는 학습의 주체자인 학생이 가진 온라인 수업의 요구를 설명하는 실증적 근거로서 제시될 수 있다. 또한, 본 연구는 향후 온라인 수업의 다각화를 위한 개선방향을 제시, 탐색하는 기초자료로 활용될 수 있을 것으로 기대한다. 이상의 연구결과를 바탕으로 추후 연구에서는 다양한 온라인 수업 활동 및 모델 설계, 온라인 수업을 지원하는 플랫폼 개발, 여학생의 이공계 진로동기 형성과정에 대한 심층적 분석이 계속되어야 할 것이다.

This study aims to investigate the online class preference depending on students' gender and school level. To achieve this aim, the study conducted a survey on 4,803 elementary, middle, and high school students in 17 regions nationwide. The valid data of 4,524 were then analyzed using the Apriori algorithm to discern the associated patterns of the online class preference corresponding to their gender and school level. As a result, a total of 16 rules, including 7 from elementary school students, 4 from middle school students, and 5 from high school students were derived. To be specific, elementary school male students preferred software-based classes whereas elementary female students preferred maker-based classes. In the case of middle school, both male and female students preferred virtual experience-based classes. On the other hand, high school students had a higher preference for subject-specific lecture-based classes. The study findings can serve as empirical evidence for explaining the needs of online classes perceived by K-12 students. In addition, this study can be used as basic research to present and suggest areas of improvement for diversifying online classes. Future studies can further conduct in-depth analysis on the development of various online class activities and models, the design of online class platforms, and the female students' career motivation in the field of science and technology.

키워드

참고문헌

  1. H. J. Park & C. S. Joo. (2020). An exploration of elementary students level of satisfaction with online EFL instruction. Multimedia-Assisted Language Learning, 23(2), 339-358. https://doi.org/10.15702/MALL.2020.23.3.339
  2. H. Jung. (2020). College students' satisfaction with the overall implementation of online classes and testing during the Corona 19 pandemic. Multimedia-Assisted Language Learning, 23(3), 392-412. DOI : 10.17232/KSET.36.3.745
  3. S. Kwon. (2020). Exploring the online class expereince and perception of the elementary and secondary teachers in Corona era. Journal of Educational Technology, 36, 745-774. DOI : 10.17232/KSET.36.3.745
  4. S. Han & G. Lee. (2020). Instructors' Perception of Synchronous Online Classes: A Case Study iof a University. Culture and Convergence, 42(7), 395-418. DOI : 10.33645/cnc.2020.07.42.7.395
  5. S. H. Kwon. (2021). A study on the digital literacy competence and the preference of online class types of Korean university students. Journal of Learner-Centered Curriculum and Instruction, 21(1), 1023-1046. DOI : 10.22251/jlcci.2021.21.1.1023
  6. H. N. Kim. (2021). Study on Lecture Satisfaction and Learning effect according to the Type of Distance Class due to COVID-19 of teacher's college: Focusing on Video production Class and Real-time video Class. Journal of Learner-Centered Curriculum and Instruction, 21(2), 169-193. DOI : 10.22251/jlcci.2021.21.2.169
  7. S. H. Lee. (2001). Teaching methodology. Seoul: Hakjisa Publishing.
  8. I. S. Lee. (1999). An Analysis of Learners' Perspectives and Learning Styles in a Web-based Environment Mixed with a Traditional Classroom. Journal of Educational Technology, 15(1), 197-213. DOI : 10.17232/KSET.15.1.197
  9. S. C. Lee & J. A. Kim. (2018). Factors that affect student satisfaction with online courses. Korean Journal of Educational Administration , 36(2), 115-138. DOI : 10.22553/keas.2018.36.2.115
  10. S. B. Lee, S. J. Chang & H. K. Jang. (2012). Exploring influential factors on learning achievement of e-Learning learners. Media & Education, 2(1), 1-35.
  11. H. Jho. (2018). Exploration of Predictive Model for Learning Outcomes of Students in the E-learning Environment by Using Machine Learning. Journal of Learner-Centered Curriculum and Instruction, 18(21), 553-572. DOI : 10.22251/jlcci.2018.18.21.553
  12. G. G. Lee, H. Ha, H. G. Hong & H. B. Kim. (2018). Exploratory Research on Automating the Analysis of Scientific Argumentation Using Machine Learning. Journal of thet Korean Association for Scinece Education, 38(2), 219-234. DOI : 10.14697/jkase.2018.38.2.219
  13. H. Yang. (2019). Exploring the Determinants of Happiness in the First Year of University Using Decision Tree Analysis. Journal of Learner-Centered Curriculum and Instruction, 19(20), 625-645. DOI : 10.22251/jlcci.2019.19.20.625
  14. R. Srikant & R. Argrawal (1997). Mining generalized association rules. Future Generation Computer Systems, 13(2-3), 161-180. https://doi.org/10.1016/S0167-739X(97)00019-8
  15. Korea Education and Research Information Service. (2020). Analysis of elementary and secondary school online education experience: Focusing on the results of basic statistic. Daegu: KERIS.
  16. J. S. Oh & C. Y. Sim. (2020). Primary English online class: Overcoming obstacles to success and remaining challenges. Primary Eenglish Education, 26(3), 203-228. DOI : 10.25231/pee.2020.26.3.203
  17. Y. Jung & J. Seo. (2020). The direction of online class in the untact era. Daegu: KERIS.
  18. H. M. Che & D. Lee. (2021). Exploring Secondary Teacher's Experience of Distance Learning due to COVID-19. Journal of Learner-Centered Curriculum and Instruction, 20(16), 1047-1071. DOI : 10.22251/jlcci.2020.20.16.1047
  19. R. Agrawal, & R. Srikant. (1994, September). Fast algorithms formining association rules, Proceedings of the 20th international Conference on Very Large Data Bases. (pp.481-499), Santiago.
  20. H. J. Kim & J. Y. Chang. (2011). Discovering News Keyword Associations Using Association Rule Mining. The Journal of The Institute of Internet, Broadcasting and Communication, 11(6), 63-71. https://doi.org/10.7236/JIWIT.2011.11.6.063
  21. P. Lee., Y. M., ParK., & Y. R. Choi. (2013). The Implementation of Association Rule to analyze of Manufacturing Execution System in shipyard, Proceedings of the Society of Computational Design and Engineering Conference, (pp.117-122), Seoul.
  22. Y. S. Jeong., T. Lim., & J. Ryu. (2021). The Effects of Spaital Mobility on Metaverse Based Online Class on Learning Presence and Interest Development in Higher Education. Journal of Educational Information and Media, 27(3), 1167-1188. DOI : 10.15833/KAFEIAM.27.3.1167
  23. J. Kwon., M. Kim., S. Lee., K. Yoo., J. Choi., H. Kim., & S. Shin. (2020). Exploring the status and direction of improvement of online class in K-12 schools in response to COVID-19. Chungbuk: KICE.
  24. M. Jin & H. Yoon. (2002). The Avoidance of Science and Engineering Fields by High School Students Attending Colleges and Universities in Korea. Sejong: KRIVET
  25. N. R. Lee & H. S. Lee. (2019). The structural relations of engineering students' percevied career barrier, engineering self-efficacy and acadmiec persistence across gender. Youth Research, 26(8), 234-258. DOI : 10.21509/KJYS.2019.08.26.8.231
  26. M. Jin & H. Yoon. (2002). The 4th basic plan for fostering and supporitng women professionals in sciecne and technology (2019~2023). Sejong: Ministry of Science and ICT