DOI QR코드

DOI QR Code

An Efficient Mixed-Integer Programming Model for Berth Allocation in Bulk Port

벌크항만의 하역 최적화를 위한 정수계획모형

  • 유태선 (부경대학교 시스템경영.안전공학부 산업경영공학전공) ;
  • 이유신 (부경대학교 시스템경영.안전공학부 산업경영공학전공) ;
  • 박현곤 (부경대학교 시스템경영.안전공학부 안전공학전공) ;
  • 김도희 (부산대학교 산업공학과) ;
  • 배혜림 (부산대학교 산업공학과)
  • Received : 2022.11.21
  • Accepted : 2022.12.20
  • Published : 2022.12.30

Abstract

We examine berth allocation problems in tidal bulk ports with an objective of minimizing the demurrage and dispatch associated berthing cost. In the proposed optimization model inventory (or stock) level constraints are considered so as to satisfy the service level requirements in bulk terminals. It is shown that the mathematical programming formulation of this research provides improved schedule resolution and solution accuracy. We also show that the conventional big-M method of standard resource allocation models can be exempted in tidal bulk ports, and thus the computational efficiency can be significantly improved.

본 연구에서는 조수조건이 고려된 벌크항만의 하역 최적화를 위한 정수계획모형을 제안한다. 특히, 본 연구에서는 실제 벌크항만의 운영 환경과 조건들을 반영하여 체선료(Demurrage Cost)와 조출료(Dispatch Money)를 모두 고려한 하역비용 최소화를 목적함수로 설정하고, 벌크항만의 서비스 수준을 결정하는 최소재고 제약조건 또한 고려한다. 일반적으로 비선형 함수 형태로 표현되는 체선료 계산식을 선형화(Linearize)하여 스케줄 해상도를 향상하고, 조수조건을 고려한 선석할당 문제의 경우 전통 자원할당 모형에서 필수적인 Big-M 제약식이 대체 가능함을 확인한다. 실험결과를 통해 기존 모형 대비 계산복잡도와 전역최적성이 크게 향상 가능함을 검증한다.

Keywords

Acknowledgement

이 논문은 2022년 부경대학교 국립대학육성사업 지원비에 의하여 연구되었음

References

  1. Barros, V. H., Costa, T. S., Oliveira, A. C., & Lorena, L. A. (2011). Model and Heuristic for Berth Allocation in Tidal Bulk Ports with Stock Level Constraints. Computers & Industrial Engineering, 60(4), 606-613. https://doi.org/10.1016/j.cie.2010.12.018
  2. Bierwirth, C., & Meisel, F. (2010). A survey of berth allocation and quay crane scheduling problems in container terminals. European Journal of Operational Research, 202(3), 615-627. https://doi.org/10.1016/j.ejor.2009.05.031
  3. Buhrkal, K., Zuglian, S., Ropke, S., Larsen, J., & Lusby, R. (2011). Models for the discrete berth allocation problem: A computational comparison. Transportation Research P art E: Logistics and Transportation Review, 47(4), 461-473. https://doi.org/10.1016/j.tre.2010.11.016
  4. Cho, J.-H., Kim, H.-S., Choi, H.-R., Park, N.-K. & Kang, M.-H. (2006). An Optimal Intermodal-Transport Algorithm using Dynamic Programming. Journal of the Korea Industrial Information Systems Research, 11(3), 20-33.
  5. Choi, H.-R., Park, N.-K., Kwon, H.-K. & Yoo, D.-Y. (2005). Analysis on the Supply Chain of Port & Logistics Industry from the Viewpoint of its Relationship. Journal of the Korea Industrial Information Systems Research, 10(3), 38-47.
  6. Cheimanoff, N., Fontane, F., Kitri, M. N., & Tchernev, N. (2021). A Reduced VNS Based Approach for the Dynamic Continuous Berth Allocation Problem in Bulk Terminals with Tidal Constraints. Expert Systems with Applications, 168, 114215. https://doi.org/10.1016/j.eswa.2020.114215
  7. Cheimanoff, N., Fontane, F., Kitri, M. N., & Tchernev, N. (2022). Exact and Heuristic Methods for the Berth Allocation Problem with Multiple Continuous Quays in Tidal Bulk Terminals. Expert Systems with Applications, 201, 117141. https://doi.org/10.1016/j.eswa.2022.117141
  8. Cordeau, J. F., Laporte, G., Legato, P., & Moccia, L. (2005). Models and tabu search heuristics for the berth-allocation problem. Transportation science, 39(4), 526-538. https://doi.org/10.1287/trsc.1050.0120
  9. De Leon, A. D., Lalla-Ruiz, E., Melian-Batista, B., & Moreno-Vega, J. M. (2017). A Machine Learning-based System for Berth Scheduling at Bulk Terminals. Expert Systems with Applications, 87, 170-182. https://doi.org/10.1016/j.eswa.2017.06.010
  10. Ernst, A. T., Oguz, C., Singh, G., & Taherkhani, G. (2017). Mathematical Models for the Berth Allocation Problem in Dry Bulk Terminals. Journal of Scheduling, 20(5), 459-473. https://doi.org/10.1007/s10951-017-0510-8
  11. Kim, K. H., & Moon, K. C. (2003). Berth scheduling by simulated annealing. Transportation Research Part B: Methodological, 37(6), 541-560. https://doi.org/10.1016/S0191-2615(02)00027-9
  12. Ku, W. Y., & Beck, J. C. (2016). Mixed Integer Programming Models for Job Shop Scheduling: A Computational Analysis. Computers & Operations Research, 73, 165-173. https://doi.org/10.1016/j.cor.2016.04.006
  13. Liu, C., Xiang, X., & Zheng, L. (2017). Two decision models for berth allocation problem under uncertainty considering service level. Flexible Services and Manufacturing Journal, 29(3), 312-344. https://doi.org/10.1007/s10696-017-9295-5
  14. Mauri, G. R., Ribeiro, G. M., Lorena, L. A. N., & Laporte, G. (2016). An adaptive large neighborhood search for the discrete and continuous berth allocation problem. Computers & Operations Research, 70, 140-154. https://doi.org/10.1016/j.cor.2016.01.002
  15. Rha, J. S. (2022). Analysis of Factors Affecting Surge in Container Shipping Rates in the Era of Covid19 Using Text Analysis. Journal of the Korea Industrial Information Systems Research, 27(1), 111-123. https://doi.org/10.9723/JKSIIS.2022.27.1.111
  16. Ribeiro, G. M., Mauri, G. R., de Castro Beluco, S., Lorena, L. A. N., & Laporte, G. (2016). Berth allocation in an ore terminal with demurrage, despatch and maintenance. Computers & Industrial Engineering, 96, 8-15. https://doi.org/10.1016/j.cie.2016.03.005
  17. Robenek, T., Umang, N., Bierlaire, M., & Ropke, S. (2014). A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in bulk ports. European Journal of Operational Research, 235(2), 399-411.
  18. Umang, N., Bierlaire, M., & Vacca, I. (2013). Exact and heuristic methods to solve the berth allocation problem in bulk ports. Transportation Research Part E: Logistics and Transportation Review, 54, 14-31. https://doi.org/10.1016/j.tre.2013.03.003