Acknowledgement
The author is very grateful to his thesis advisor Professor Xi Zhang for his constant support and countless advice. The author is also grateful to the anonymous referees and the editor for their careful reading and helpful suggestions which greatly improved the article. The authors are partially supported by NSF in China No. 11625106, 11801535 and 11721101. The research was partially supported by the project "Analysis and Geometry on Bundle" of Ministry of Science and Technology of the People's Republic of China, No. SQ2020YFA070080.
References
- S. Alesker, Solvability of the quaternionic Monge-Ampere equation on compact manifolds with a flat hyperKahler metric, Adv. Math. 241 (2013), 192-219. https://doi.org/10.1016/j.aim.2013.03.021
- S. Alesker and E. Shelukhin, On a uniform estimate for the quaternionic Calabi problem, Israel J. Math. 197 (2013), no. 1, 309-327. https://doi.org/10.1007/s11856-013-0003-1
- S. Alesker and E. Shelukhin, A uniform estimate for general quaternionic Calabi problem (with an appendix by Daniel Barlet), Adv. Math. 316 (2017), 1-52. https://doi.org/10.1016/j.aim.2017.05.023
- S. Alesker and M. Verbitsky, Plurisubharmonic functions on hypercomplex manifolds and HKT-geometry, J. Geom. Anal. 16 (2006), no. 3, 375-399. https://doi.org/10.1007/BF02922058
- S. Alesker and M. Verbitsky, Quaternionic Monge-Ampere equation and Calabi problem for HKT-manifolds, Israel J. Math. 176 (2010), 109-138. https://doi.org/10.1007/s11856-010-0022-0
- L. Bedulli, G. Gentili, and L. Vezzoni, A parabolic approach to the Calabi-Yau problem in HKT geometry, arXiv:2105.04925.
- Z. B locki, The complex Monge-Ampere equation on compact Kahler manifolds, Course given at the Winter School in Complex Analysis, Toulouse, January 2005.
- S. Boucksom, P. Eyssidieux, and V. Guedj, Introduction, in An introduction to the Kahler-Ricci flow, 1-6, Lecture Notes in Math., 2086, Springer, Cham, 2013. https://doi.org/10.1007/978-3-319-00819-6_1
- C. P. Boyer, A note on hyper-Hermitian four-manifolds, Proc. Amer. Math. Soc. 102 (1988), no. 1, 157-164. https://doi.org/10.2307/2046051
- H. D. Cao, Deformation of Kahler metrics to Kahler-Einstein metrics on compact Kahler manifolds, Invent. Math. 81 (1985), no. 2, 359-372. https://doi.org/10.1007/BF01389058
- P. Cherrier, Equations de Monge-Ampere sur les varietes hermitiennes compactes, Bull. Sci. Math. (2) 111 (1987), no. 4, 343-385.
- J. Chu, The parabolic Monge-Ampere equation on compact almost Hermitian manifolds, J. Reine Angew. Math. 761 (2020), 1-24. https://doi.org/10.1515/crelle-2018-0019
- I. Gelfand, V. Retakh, and R. L. Wilson, Quaternionic quasideterminants and determinants, in Lie groups and symmetric spaces, 111-123, Amer. Math. Soc. Transl. Ser. 2, 210, Adv. Math. Sci., 54, Amer. Math. Soc., Providence, RI, 2003. https://doi.org/10.1090/trans2/210/08
- D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
- M. Gill, Convergence of the parabolic complex Monge-Ampere equation on compact Hermitian manifolds, Comm. Anal. Geom. 19 (2011), no. 2, 277-303. https://doi.org/10.4310/CAG.2011.v19.n2.a2
- G. Grantcharov and Y. S. Poon, Geometry of hyper-Kahler connections with torsion, Comm. Math. Phys. 213 (2000), no. 1, 19-37. https://doi.org/10.1007/s002200000231
- B. Guan, S. Shi, and Z. Sui, On estimates for fully nonlinear parabolic equations on Riemannian manifolds, Anal. PDE 8 (2015), no. 5, 1145-1164. https://doi.org/10.2140/apde.2015.8.1145
- P. S. Howe and G. Papadopoulos, Twistor spaces for hyper-Kahler manifolds with torsion, Phys. Lett. B 379 (1996), no. 1-4, 80-86. https://doi.org/10.1016/0370-2693(96)00393-0
- B. Huisken, Parabolic Monge-Ampere equations on Riemannian manifolds, J. Funct. Anal. 147 (1997), no. 1, 140-163. https://doi.org/10.1006/jfan.1996.3062
- P. Li and S.-T. Yau, On the parabolic kernel of the Schrodinger operator, Acta Math. 156 (1986), no. 3-4, 153-201. https://doi.org/10.1007/BF02399203
- G. M. Lieberman, Second order parabolic differential equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. https://doi.org/10.1142/3302
- A. J. Sommese, Quaternionic manifolds, Math. Ann. 212 (1974/75), 191-214. https://doi.org/10.1007/BF01357140
- M. Sroka, The C0 estimate for the quaternionic Calabi conjecture, Adv. Math. 370 (2020), 107237, 15 pp. https://doi.org/10.1016/j.aim.2020.107237
- W. Sun, Parabolic complex Monge-Ampere type equations on closed Hermitian manifolds, Calc. Var. Partial Differential Equations 54 (2015), no. 4, 3715-3733. https://doi.org/10.1007/s00526-015-0919-x
- W. Sun, On uniform estimate of complex elliptic equations on closed Hermitian manifolds, Commun. Pure Appl. Anal. 16 (2017), no. 5, 1553-1570. https://doi.org/10.3934/cpaa.2017074
- V. Tosatti, KAWA lecture notes on the Kahler-Ricci flow, Ann. Fac. Sci. Toulouse Math. (6) 27 (2018), no. 2, 285-376. https://doi.org/10.5802/afst.1571
- V. Tosatti and B. Weinkove, The complex Monge-Ampere equation on compact Hermitian manifolds, J. Amer. Math. Soc. 23 (2010), no. 4, 1187-1195. https://doi.org/10.1090/S0894-0347-2010-00673-X
- M. Verbitsky, HyperKahler manifolds with torsion, supersymmetry and Hodge theory, Asian J. Math. 6 (2002), no. 4, 679-712. https://doi.org/10.4310/AJM.2002.v6.n4.a5
- M. Verbitsky, Balanced HKT metrics and strong HKT metrics on hypercomplex manifolds, Math. Res. Lett. 16 (2009), no. 4, 735-752. https://doi.org/10.4310/MRL.2009.v16.n4.a14
- B. Weinkove, The Kahler-Ricci flow on compact Kahler manifolds, in Geometric analysis, 53-108, IAS/Park City Math. Ser., 22, Amer. Math. Soc., Providence, RI, 2016. https://doi.org/10.1090/pcms/022/03
- S. T. Yau, On the Ricci curvature of a compact Kahler manifold and the complex MongeAmpere equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339-411. https://doi.org/10.1002/cpa.3160310304
- D. Zhang, Hessian equations on closed Hermitian manifolds, Pacific J. Math. 291 (2017), no. 2, 485-510. https://doi.org/10.2140/pjm.2017.291.485