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PARABOLIC QUATERNIONIC MONGE-AMPÈRE

EQUATION ON COMPACT MANIFOLDS WITH

A FLAT HYPERKÄHLER METRIC

Jiaogen Zhang

Abstract. The quaternionic Calabi conjecture was introduced by
Alesker-Verbitsky, analogous to the Kähler case which was raised by Cal-

abi. On a compact connected hypercomplex manifold, when there exists

a flat hyperKähler metric which is compatible with the underlying hyper-
complex structure, we will consider the parabolic quaternionic Monge-

Ampère equation. Our goal is to prove the long time existence and C∞

convergence for normalized solutions as t → ∞. As a consequence, we

show that the limit function is exactly the solution of quaternionic Monge-

Ampère equation, this gives a parabolic proof for the quaternionic Calabi
conjecture in this special setting.

1. Introduction

Suppose that (M, I, J,K,Ω) is a compact HKT (stands for hyperKähler with
torsion) manifold, where I, J,K is a triple of complex structures satisfying the
imaginary quaternion relations and Ω is a smooth HKT form. Let f : M → R
be a given smooth function. In the spirit of the famous Calabi-Yau theorem
[31] on the compact Kähler manifold, in 2010 Alesker-Verbitsky [5] posed the
following quaternionic Calabi conjecture which has been studied extensively.

Conjecture 1.1. Let (M, I, J,K,Ω) be a compact HKT manifold of real di-
mension 4n. Then there exists a constant A > 0 such that the equation

(1) (Ω + ∂∂Jϕ)n = AefΩn, Ω + ∂∂Jϕ > 0,

admits a unique solution ϕ ∈ C∞(M,R).

One can deduce that the equation (1) is a fully nonlinear elliptic equation of
second order when n ≥ 2. In this paper, we are interested in the HKT manifold
because it belongs to the realm of quaternionic geometries and also intimately
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connected with the 2-dimensional sigma models with (4,0) supersymmetry arise
in theoretical physics, see [16,18] and the references therein.

In the pioneer work [5], the authors also conjectured that the equation (1) ad-
mits a unique solution when there exists a non-vanishing I-holomorphic (2n, 0)
form Θ on the complex manifold (M, I) such that∫

M

(1−Aef )Ωn ∧Θ = 0.

They proved the uniqueness theorem and also provided the C0 estimate under
the existence of such Θ, by using the classical Moser iteration technique used
by Yau [31]. Aside from these, they also gave a geometrical explanation for
the equation (1) analogous to the complex case, see also [29] by Verbitsky.
Precisely, given an HKT form Ω and a complex volume form denoted by efΩn

for some smooth function f , we can find another HKT form Ωϕ := Ω + ∂∂Jϕ
whose volume form is exactly the prescribed form efΩn.

When the hypercomplex structure is locally flat1, using a similar argument
of B locki [7] in Kähler manifolds, Alesker-Shelukhin [2] were able to give the
C0 estimate. Furthermore, under a more stringent assumption, when we as-
sume M is a compact HKT manifold with a flat hyperKähler metric which
is compatible with the underlying hypercomplex structure, the conjecture was
already confirmed by Alesker [1]. In [3], Alesker-Shelukhin systematically con-
sidered the C0 estimate without further assumptions. Very recently, Sroka [23]
provided a simpler proof, by using a similar procedure as in [11,17,25,27,32] for
the Hermitian case. Let us remark that when the paper was being reviewed, the
same result was posted on arxiv [6], we wish to thank the referee for pointing
out it to us.

Motivated by the work of Alesker [1], our goal of this paper is to consider
the parabolic quaternionic Monge-Ampère equation for the unknown function
ϕ, which can be written in the following form

(2)

 ∂tϕ = log (Ω+∂∂Jϕ)n

Ωn − f,
Ω + ∂∂Jϕ > 0,
ϕ(·, 0) = 0.

Similar flows have been extensively studied in [10, 12, 15, 19, 24] and references
therein in the Riemannian, Kähler, Hermitian and almost Hermitian settings.

We now state our main result.

Theorem 1.2. Suppose (M, I, J,K,Ω) is a compact HKT manifold of real di-
mension 4n. Assume there exists a flat hyperKähler metric which is compatible
with the underlying hypercomplex structure. Let f ∈ C∞(M,R). Then the
solution ϕ for the flow (2) exists for all time.

1Locally, the hypercomplex structures I,J and K are pull backs of standard hypercomplex

structures in Hn. For more details, see [2, 22].
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Moreover, if we normalize Ω by a constant such that
∫
M

Ωn ∧ Ω̄n = 1. Let

(3) ϕ̃ = ϕ−
∫
M

ϕΩn ∧ Ω̄n.

Then ϕ̃ converges to ϕ∞ smoothly as t→∞, and there exists a constant b ∈ R
such that

(4) (Ω + ∂∂Jϕ∞)n = ef+bΩn.

This gives a parabolic proof of the quaternionic Calabi conjecture in a special
setting, based on the solution of Alesker toward this conjecture [1].

The organization of this paper as follows: In Section 2, we will collect some
basic concepts in hypercomplex manifolds, especially those notions we have
used repeatedly in this paper. The C0 and C2 estimates for the flow (2) will
be provided in Section 3 and Section 4, respectively. In Section 5, we will
prove the long time existence for the flow (2). Using the parabolic Harnack
inequality established in Section 6, we can obtain the convergence of the flow
(2) in Section 7.

2. Preliminaries

In this section, to avoid confusions, we give a short review of some concepts
in the hypercomplex manifolds which will be used repeatedly in this paper.

2.1. HKT manifolds

We start by recalling the definition of HKT manifolds. Let M be a smooth
manifold of real dimension 4n endowed with a triple of endomorphisms I, J,K
on TM satisfying the quaternionic relation

I2 = J2 = K2 = IJK = −Id.

Moreover, if those I, J,K are integrable complex structures, then we call
(M, I, J,K) is a hypercomplex manifold, which was introduced explicitly by
Boyer [9]. In what follows, we also suppose that I, J,K act on the right on the
tangent bundle TM of M , since the left action is similar.

Let G be a Riemannian metric on the hypercomplex manifold (M, I, J,K).
We say that G is quaternionic Hermitian if I, J,K are G-orthogonal, i.e.,

G(X,Y ) = G(X · I, Y · I) = G(X · J, Y · J) = G(X ·K,Y ·K).

In this case, we say (M, I, J,K,G) is a hyperhermitian manifold. Another
equivalent definition states that G is invariant with respect to the group SU(2)
⊂ H∗ of unitary quaternionic, that is, G(X · q, Y · q) = G(X,Y ) for all real
vector fields X,Y and all q ∈ H with ‖q‖ = 1. For simplicity, we denote SM
by whole sphere of complex structures, i.e.,

SM =
{
aI + bJ + cK | a, b, c ∈ R, a2 + b2 + c2 = 1

}
.
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Given a quaternionic Hermitian metric G on the hypercomplex manifold
(M, I, J,K), let us consider the following Hodge type (2,0) form

Ω = ωJ −
√
−1ωK

with respect to I, where ωN = G(·N, ·) for each N ∈ SM . Let ∂ be a Dolbeault
differential operator on (M, I), we say (M, I, J,K,Ω) is an HKT manifold if

∂Ω = 0.

In this case, the metric G is referred to as an HKT metric, which was first
introduced by Howe and Papadopoulos [18]. Sometimes, we also call Ω is an
HKT form with respect to the HKT metric G.

Remark 2.1. It is well-known that G is a hyperKähler metric when we further
assume ∂̄Ω = 0. Notice that in [2], Alesker provided an example of HKT
manifold (such as the quaternionic torus: quotient of Hn by a lattice) which
admits a flat hyperKähler metric while the original metric is not hyperKähler.

2.2. ∂J operator and quaternionic Hessian

Now we are ready to recall the definition of ∂J operator, which was first
introduced by Verbitsky [28].

Let (M, I, J,K) be a hypercomplex manifold of real dimension 4n, and
Λp,qI (M) be the vector bundle of (p, q) forms on (M, I). By the abuse of no-
tations, in what follows we shall use the same symbol Λp,qI (M) to denote the
space of smooth sections of this bundle.

Let ∂ : Λp,qI (M) −→ Λp+1,q
I (M) be the usual ∂-differential on differential

forms on the complex manifold (M, I). We set ∂J = J−1 · ∂̄ · J . First, consider

∂J : C∞ → Λ1,0
I (M) which maps f to J−1(∂̄f), where ∂̄ : C∞ → Λ0,1

I (M) is
the standard Dolbeault differential operator on (M, I). Using the Leibniz rule,
we can extend it to

∂J : Λp,qI (M)→ Λp+1,q
I (M).

One can verify that ∂∂J = −∂J∂.
For any p = 0, 1, . . . , n, we say a form ω ∈ Λ2p,0

I (M) is real if J · ω = ω,
where the conjugate is in the quaternionic sense. Let us denote the space of
C∞-smooth (2p, 0) real forms on (M, I) by Λ2p,0

I,R (M). We have the following
lemma.

Lemma 2.2 ([1, Lemma 0.5]). Let (M, I, J,K) be a hypercomplex manifold.

For v ∈ C∞(M,R), then ∂∂Jv ∈ Λ2,0
I,R(M) and we call it the quaternionic

Hessian of v.

Let SHM be a vector bundle over M whose fiber at q ∈M is exactly the set
of hyperhermitian forms on the tangent space TqM . Recall the isomorphism

(5) τ : Λ2,0
I,R(M)→ SHM

which is defined by
τ(η)(V, V ) := η(V, V · J)
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for any real vector field V on M .
For each quaternion q ∈ H, we write it in the following standard form

q = t · 1 + x · i+ y · j + z · k,

where t, x, y, z ∈ R and i, j, k satisfy the usual quaternionic relations. For each
H-valued function F , its Cauchy-Riemann-Fueter derivatives ∂

∂q̄ were given as

∂F

∂q̄
:=

∂F

∂t
+ i

∂F

∂x
+ j

∂F

∂y
+ k

∂F

∂z
,

and its quaternion conjugate ∂
∂q were defined by

∂F

∂q
:=

∂F

∂t
− ∂F

∂x
i− ∂F

∂y
j − ∂F

∂z
k.

In the higher dimensional case, we can also define ∂
∂q̄j

and ∂
∂qi

in the similar

way. One can obtain the following commute relationship[ ∂
∂qi

,
∂

∂q̄j

]
= 0.

Let X ⊂ Hn be an open subset. Now we recall another version of Hes-
sian for real valued functions on X. For any F ∈ C∞(X,R), the matrix(

∂2F
∂q̄i∂qj

)
∈ SHX is hyperhermitian. In what follows we will denote it by HessHF

for convenience. Sometimes, we also call it as the quaternionic Hessian of F
without confusion occurs. Furthermore, using the τ -isomorphism defined in
(5), one can arrive that

(6) τ(∂∂JF ) = κ ·
( ∂2F

∂q̄i∂qj

)
,

where κ > 0 is a normalizing constant and we may choose κ = 1 (see e.g. [4]).

Definition 2.3. Let (M, I, J,K,Ω) be an HKT manifold of real dimension 4n.

We say a form η ∈ Λ2,0
I,R(M) is strictly positive (resp. positive) if τ(η) > 0

(resp. τ(η) ≥ 0). Moreover, we say a form Θ ∈ Λ2n,0
I,R (M) is strictly positive if

Θ = eφΩn

for some function φ ∈ C∞(M,R).

Notice that the positivity of Θ above is independent of the choice of Ω, since
the canonical bundle Λ2n,0

I,R (M) is orientable. Analogous to the complex case,
we recall the notion of plurisubharmonic functions.

Definition 2.4. We say F ∈ C2(M,R) is strictly quaternionic plurisubhar-

monic (resp. quaternionic plurisubharmonic) if ∂∂JF ∈ Λ2,0
I,R(M) is strictly

positive (resp. positive).
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Let us remark that we can extend this terminology to general real valued
continuous functions, see [4, Definition 7.1] for more details.

For a hyperhermitian matrix A, one can define the so called Moore deter-
minant det(A) (see [2, Difinition 17] and references therein). The following
lemma is a quiet useful tool in many places.

Lemma 2.5 ([4, Corollary 4.6]). Let F : X → R be a smooth function. Then
there exists a dimensional constant cn > 0 such that

(7) (∂∂JF )n = cn det(HessHF )Ωn,

where Ωn ∈ Λ2n,0
I,R (X) is a standard strictly positive form in Hn.

3. C0 estimate

Proposition 3.1. Let ϕ solve the flow (2). There is a positive constant C
depending on all the allowed data and ‖f‖L∞(M) such that

(8) sup
MT

|ϕ̃| ≤ sup
t∈[0,T )

(
sup
x∈M

ϕ(x, t)− inf
x∈M

ϕ(x, t)
)
≤ C,

where [0, T ) is a maximal time interval of the flow (2).

Proof. Differentiating the flow (2) by ∂
∂t , we can deduce the following heat type

equation:

(9) ∂t
(
∂tϕ
)

=
n∂∂J∂tϕ ∧ (Ω + ∂∂Jϕ)n−1

(Ω + ∂∂Jϕ)n
=: �

(
∂tϕ
)
.

Clearly, � is an operator of second order and elliptic.
Applying the parabolic maximum principle for (9), we know that ∂tϕ attains

its maximum at t = 0. Thus,

(10) sup
MT

∣∣∂tϕ∣∣ ≤ sup
M×{0}

∣∣∂tϕ∣∣ ≤ ∥∥f∥∥L∞(M)
.

Let us denote f̃ = f + ∂tϕ. Then this is a smooth bounded function on M for
each t ∈ [0, T ). Moreover,

sup
MT

|f̃ | ≤ ‖f‖L∞(M) + sup
MT

∣∣∣∂tϕ(x, t)
∣∣∣ ≤ 2‖f‖L∞(M).(11)

Since ϕ solves the equation,

(Ω + ∂∂Jϕ)n = ef̃Ωn.

According to the main Theorem in [2] (see also [3, 23] for more general case),

there is a constant C depending on the allowed data and on supMT
|f̃ | (hence

on ‖f‖L∞(M)) such that

sup
t∈[0,T )

(
sup
x∈M

ϕ(x, t)− inf
x∈M

ϕ(x, t)
)
≤ C,

which completes the proof. �
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4. C2 estimate

In this section we mainly prove the following theorem:

Theorem 4.1. Suppose (M, I, J,K,Ω) is a compact HKT manifold of real
dimension 4n with a flat hypercomplex structure. Let us assume in addition that
M admits a metric G̃ which is parallel to with respect to the Obata connection
∇Ob.2 If ϕ solves the flow (2), then there exists a constant C depending on

(M, I, J,K), Ω, G̃ such that

(12) sup
M×[0,T )

|HessHϕ|G̃ ≤ C.

Proof. Let us define a Laplacian operator: for each h ∈ C2(M,R),

∆̃h = Tr(G̃−1 ·HessHh).

We consider the following quantity

Q = 2

√
Tr(G̃−1 · (G+ HessHϕ))− ϕ̃.

For any T ′ < T , we may assume Q achieves its maximum at (x0, t0) in M ×
[0, T ′]. Let g ∈ C∞ be the local potential function of the metric G (see e.g.
[4, Proposition 1.14]), whence u = g+ϕ is a strictly plursubharmonic function
and we denote U = HessHu.

Around (x0, t0), we can pick up a proper locally flat coordinates (q1, . . . , qn)

such that G̃ = In in a small neighborhood and U is diagonal at (x0, t0). Based
on this notation we have

Q = 2(∆̃u)
1
2 − ϕ̃.

We also recall another Laplacian operator: for each h ∈ C2(M,R),

∆ϕh := Tr
(

(G+ HessHϕ)−1 ·HessHh
)
.

For simplicity, we denote ∂tϕ by ϕt. At (x0, t0), by the maximal principle,

0 ≤
( ∂
∂t
−∆ϕ

)
Q

= (∆̃u)−
1
2 ∆̃ϕt − ϕt +

∫
M

ϕtΩ
n ∧ Ω̄n + ∆ϕϕ− 2∆ϕ(∆̃u)

1
2

= (∆̃u)−
1
2 ∆̃ϕt − ϕt +

∫
M

ϕtΩ
n ∧ Ω̄n + n−

∑
i

1

uīi
− 2∆ϕ(∆̃u)

1
2 .

(13)

Now in this local coordinates around (x0, t0) we have detU = exp{f + ϕt}. It
follows [1, Proposition 3.6] that

(14) 2∆ϕ(∆̃u)
1
2 ≥ (∆̃u)−

1
2

(
∆̃f + ∆̃ϕt

)
.

2As pointed in [1, p. 204], M admits a flat hyperKähler metric χ compatible with the

hypercomplex structure is equivalent to say G̃ is parallel with respect to the Obata connection.
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In light of (13) to (14) and Proposition 3.1, we can deduce that∑
i

1

uīi
+ (∆̃u)−

1
2 ∆̃f ≤ C1.

Let us set C2 := ‖∆̃f‖C0(M). It follows that

(15)
∑
i

1

uīi
≤ C1 + C2

(∑
i

uīi
)− 1

2 .

We may assume u11̄ = min
1≤i≤n

uīi. Therefore,

(16)
1

u11̄

≤ C1 + C2u
− 1

2

11̄
,

which implies uīi ≥ u11̄ ≥ C−1
3 for all 1 ≤ i ≤ n. Since∏

i

uīi = exp{f + ϕt} ≤ C4,

so, uīi ≤ C4C
n−1
3 for all i. We conclude that

(17)
1

C5
≤ ∆̃u =

∑
i

uīi ≤ C5,

which gives a uniform estimate for the Laplacian of ϕ. �

5. Long time existence of the solution

In this section, we will give the proof of the long time existence of Theorem
1.2. To this end, we need the following theorem.

Theorem 5.1. Let ϕ solve the flow (2) and [0, T ) be the maximal time interval.
For each ε ∈ (0, T ) and for each k ∈ N, there exists a constant Cε,k depending
on the allowed data, ε and k such that

(18) sup
M×[ε,T )

|∇kϕ| ≤ Cε,k.

Proof. To prove (18), it suffices to show that G+ HessHϕ is Hölder continuous.
Indeed, given the Hölder bound for the metric HessHϕ and the second order es-
timate for ϕ, differentiating the flow and then using the Schauder estimates and
the standard bootstrapping arguments, we can get the higher order estimates.

The estimate of
[
HessHϕ

]
Cα(M×[ε,T ))

is standard, we split it into the next

proposition and a sketch of proof will be included. �

Proposition 5.2. Let ϕ solve the flow (2) and [0, T ) be the maximal time
interval. For each ε ∈ (0, T ), there exist α ∈ (0, 1) and a constant Cε depending
only on the initial data and ε such that

(19)
[
HessHϕ

]
Cα(M×[ε,T ))

≤ Cε.
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Proof. The proof is local since M is locally flat. Let O ⊂ Hn be an arbitrary
open subset. For each α ∈ (0, 1), on OT := O × [0, T ), we define[

ϕ
]
α,(x,t)

:= sup
(y,s)∈OT \(x,t)

|ϕ(y, s)− ϕ(x, t)|
(|y − x|+

√
|s− t|)α

;

[
ϕ
]
α,OT

:= sup
(x,t)∈OT

[
ϕ
]
α,(x,t)

.

As mentioned before, the metric G can be locally represented by a potential
g. That is, G = HessHg on O when we shrink O if necessary, whence u = g+ϕ
is a strictly quaternionic plursubharmonic function and we denote U = HessHu.
Let us define an operator on the hyperhermitian matrix A = (aij̄) by

(20) Φ(A) := log det(A);

moreover,

(21) Φij̄(A) :=
∂Φ(A)

∂aij̄
= Aij̄ .

Now we can rewrite (2) as

(22) ∂tϕ = Φ(U)− F, U > 0,

where F = f + log detG. By the concavity of Φ, for all (x, t1), (y, t2) ∈ O ×
[0, T ), we have ∑

U ij̄(y, t2)(Uij̄(x, t1)− Uij̄(y, t2))

≥ ∂tϕ(x, t1)− ∂tϕ(y, t2)− F (x) + F (y)

≥ ∂tu(x, t1)− ∂tu(y, t2)− C‖x− y‖
(23)

for some constant C depending on ‖F‖C1 .
Notice that the quaternionic Hessian U has eigenvalues in (λ,Λ) with 0 <

λ < Λ < ∞ by Theorem 4.1. Analogous to the real and complex settings in
[7, 13,14], we need the following lemma which is from linear algebra.

Lemma 5.3 ([1, Lemma 4.9]). There exist a constant N , unit vectors ξα (1 ≤
α ≤ N), and constants 0 < λ∗ < Λ∗ <∞ depending on n, λ,Λ such that

U−1 =

N∑
α=1

µαξ
α ⊗ (ξα)∗,

where λ∗ ≤ µα ≤ Λ∗ and ξ1, . . . , ξN containing an orthonormal basis of Hn.

For any unit vector ξ = (ξ1, . . . , ξn) ∈ Hn, we denote by ∆ξ the Laplacian
on any translate of the quaternionic line spanned by ξ. Then we have

(24) Tr((ξ ⊗ ξ∗)(uij̄)) = Tr(ξ(uij̄)ξ
∗) = ∆ξu.
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For convenience, we denote µ0 = 1 and ∆ξ0 = − ∂
∂t . By (23) we obtain

(25)

N∑
β=0

µβ
(
∆ξβu(y, t2)−∆ξβu(x, t1)

)
≤ C‖x− y‖.

Lemma 5.4. For any β = 0, 1, . . . , N , there exists a bounded function h
(depending on U) such that

(26) ∂t∆ξβu ≤ U ij̄
(
∆ξβUij̄

)
+ h.

Proof. For β = 0. Applying ∂t to (22), then

∂t
(
∂tu
)

= U ij̄∂t
(
Uij̄
)

and the (26) follows.

For other β ≥ 1, write ξβ = (ξβ1 , . . . , ξ
β
n), we can differentiate (22) along ξβp

twice and take sum for index p, then

∂t∆ξβu = U ij̄
(
∆ξβUij̄

)
+

n∑
p=1

∂2Φ(U)

∂aij̄∂akl̄
Uij̄ξβpUkl̄ξβp −∆ξβF

≤ U ij̄
(
∆ξβUij̄

)
−∆ξβF,

by the concavity of Φ. Then the lemma follows. �

Fixing t̂ ∈ [ε, T ), we can find a constant 1 > r > 0 sufficient small such that
10r2 ≤ t̂. Define two types of parabolic cylinders

Pr :=
{

(x, t) ∈ OT : ‖x‖ ≤ r, t̂− 5r2 ≤ t ≤ t̂− 4r2
}

;

and
Qr :=

{
(x, t) ∈ OT : ‖x‖ ≤ r, t̂− r2 ≤ t ≤ t̂

}
.

For any β = 0, 1, . . . , N , let us denote

Mβ,r := sup
Qr

∆ξβu, mβ,r := inf
Qr

∆ξβu;

η(r) :=

N∑
β=0

(Mβ,r −mβ,r).

To prove (19), it suffices to prove there exist a constant C (only depending on
ε) and 0 < δ < 1 such that

η(r) ≤ Crδ.

Lemma 5.5 ([1, Lemma 4.6]). The operator v → Tr(U−1 · HessHv) can be
written in the following divergence form

(27) Dv =
∑
s,t

Ds(astDtv),

where s, t run over all the real variables, (ast)4n×4n is a symmetric matrix with
C2-smooth coefficients satisfy uniform elliptic estimates λ‖ξ‖2 ≤

∑
s,t astξsξt ≤

Λ‖ξ‖2 for 0 < λ < Λ <∞ and ξ ∈ R4n.
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The following weak parabolic Harnack inequality is crucial.

Lemma 5.6 ([21, Theorem 7.37]). If v ∈W 2,1
2n+1 is a nonnegative function and

satisfies

−∂v
∂t

+
∑
s,t

Ds(astDtv) ≤ h on Q4r,

where h is a bounded function and the matrix (ast) as in Lemma 5.5. Then
there exist positive constants C, p depending on n, λ,Λ such that

(28)
1

r4n+2

(∫
Pr

vp
) 1
p ≤ C

(
inf
Br
v + r

4n
4n+1 ‖h‖L2n+1

)
.

For each β = 0, 1, . . . , N , let us denote vβ := Mβ,2r − ∆ξβu. Then vβ ∈
W 2,1

2n+1 is a nonnegative function. Moreover, each vβ satisfies

−∂tvβ + Tr(U−1 ·HessHvβ) ≤ h

since ∆ξβuij̄ = (∆ξβu)ij̄ on OT . Then by Lemmas 5.4 and 5.6,

(29)
1

r4n+2

(∫
Pr

(Mβ,2r −∆ξβu)p
) 1
p ≤ C

(
Mβ,2r −Mβ,r + r

4n
4n+1

)
,

where C is a constant as in Lemma 5.6. On the other hand, let (x, t1), (y, t2) ∈
Q2r, it then follows from (25) that

µβ
(
∆ξβu(y, t2)−∆ξβu(x, t1)

)
≤ Cr +

∑
0≤γ≤N
γ 6=β

µγ
(
∆ξγu(x, t1)−∆ξγu(y, t2)

)
.

Recall the definition of Mβ,r and mβ,r, for each ε > 0, choose a point (x, t1) ∈
Q2r properly such that

mβ,2r ≤ ∆ξβu(x, t1) + ε.

As a consequence, after dividing a uniform constant µβ ,

∆ξβu(y, t2)−mβ,2r ≤ Cr + C
∑

0≤γ≤N
γ 6=β

(Mγ,2r −∆ξγu(y, t2)),

by the arbitrariness of ε. Integrating for (y, t2) on Pr, and using the fundamen-
tal inequality ‖a+ b‖p ≤ ‖a‖p + ‖b‖p for p > 1,

1

r4n+2

(∫
Pr

(
∆ξβu(y, t2)−mβ,2r

)p) 1
p

≤ C

r4n+2

(∫
Pr

[
r +

∑
0≤γ≤N
γ 6=β

(Mγ,2r −∆ξγu(y, t2))
]p) 1

p

(30)

≤ Cr +
C

r4n+2

∑
0≤γ≤N
γ 6=β

(∫
Pr

[Mγ,2r −∆ξγu(y, t2)]p
) 1
p
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(29)

≤ C
∑

0≤γ≤N
γ 6=β

(Mγ,2r −Mγ,r) + Cr
4n

4n+1 ,

where we have used the fact 0 < r < 1 in the last inequality. In light of (29)
to (30), and the inequality ‖a+ b‖p ≤ ‖a‖p + ‖b‖p, we obtain

Mβ,2r −mβ,2r ≤
C

r4n+2

(∫
Pr

(Mβ,2r −∆ξβu)p
) 1
p

+
C

r4n+2

(∫
Pr

(∆ξβu−mβ,2r)
p
) 1
p

≤ C
N∑
γ=0

(Mγ,2r −Mγ,r) + Cr
4n

4n+1 .

Summing over β, then we deduce

η(2r) ≤ C
N∑
γ=0

(Mγ,2r −Mγ,r) + Cr
4n

4n+1 .

By the definition, m·,s is non-increasing about s, whence

η(2r) ≤ C
N∑
γ=0

((Mγ,2r −mγ,2r)−Mγ,r +mγ,r) + Cr
4n

4n+1

= C(η(2r)− η(r)) + Cr
4n

4n+1 .

Equivalently,

η(r) ≤
(

1− 1

C

)
η(2r) + Cr

4n
4n+1 .

Now we apply a standard iteration technique (see [14, Chapter 8] for more
details), there exists a dimensional constant δ with 1 > δ > 0 such that η(r) ≤
Crδ. This completes the proof of Proposition 5.2. �

6. Parabolic Harnack inequality

First of all, we have the following proposition.

Proposition 6.1. For each k ∈ N, there exists a constant Ck depending on
the allowed data and k such that

(31) sup
M×[0,∞)

|∇kϕ| ≤ Ck,

where ∇ is the Levi-Civita connection with respect to G̃.

Proof. Suppose that [0, T ) is the maximal time interval of the flow (2) and
T <∞. By (10), there exists a uniform constant C such that

(32) |ϕ| ≤ T sup
M×[0,T )

|∂tϕ| ≤ CT, on M × [0, T ).

We know that ϕ is actually smooth on M × [0, T ) by (18). Together with short
time existence, one can extend the flow to [0, T+ε0) with ε0 > 0, which yields a
contradiction. The interested reader can find more details about this standard
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discussion in the proof of [26, Theorem 3.1], see also in [8, 30] and references
therein. Then the proposition is a consequence of Theorem 5.1. �

Let us denote φ = ∂tϕ. By (9) we know

∂tφ−�φ = 0.

We have the following parabolic Harnack inequality:

Proposition 6.2. Let 0 < t1 < t2 < T with [0, T ) be the maximal time interval.
Then there exist constants Ci (i = 1, 2, 3) depending only on (M, I, J,K), Ω
and f such that

(33) sup
x∈M

φ(x, t1) ≤ inf
x∈M

φ(x, t2)
( t2
t1

)C1

exp
( C2

t2 − t1
+ C3(t2 − t1)

)
.

Proof. With the Lemmas A.2 and A.3 below at hand, then we can apply the
procedure of [15, Lemma 6.3] or [12, Proposition 7.4] verbatim. �

7. Convergence of parabolic flow

Proof of Theorem 1.2. For each m ∈ N, we define

φ̌m(x, t) := sup
x∈M

φ(x,m− 1)− φ(x,m− 1 + t);

φ̂m(x, t) := φ(x,m− 1 + t)− inf
x∈M

φ(x,m− 1).

We are able to verify that

(∂t −�)φ = (∂t −�)φ̂m = (∂t −�)φ̌m = 0.

Applying the parabolic Harnack inequality (33), this yields

(34) sup
x∈M

φ̂m(x, t1) ≤ C inf
x∈M

φ̂m(x, t2);

(35) sup
x∈M

φ̌m(x, t1) ≤ C inf
x∈M

φ̌m(x, t2).

Choosing t1 = 1
2 , t2 = 1 in (34) and (35), we get

(36) sup
x∈M

φ(x,m− 1

2
)− inf

x∈M
φ(x,m−1) ≤ C

(
inf
x∈M

φ(x,m)− inf
x∈M

φ(x,m−1)
)
;

(37) sup
y∈M

φ(y,m−1)− inf
x∈M

φ(x,m− 1

2
) ≤ C

(
sup
y∈M

φ(y,m−1)− sup
x∈M

φ(x,m)
)
.

In light of (36) and (37), let

θ(t) := sup
y∈M

φ(y, t)− inf
y∈M

φ(y, t).

Then we have

(38) θ(m− 1) + θ(m− 1

2
) ≤ C

(
θ(m− 1)− θ(m)

)
,
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which implies that

θ(m) ≤ e−δθ(m− 1)

for some δ := − log(1− 1
C ) > 0. By induction, we know that

θ(t) ≤ Ce−δt.

While
∫
M
∂tϕ̃ω

m = 0, by the mean value theorem, there exists a point xt ∈M
such that ∂tϕ̃ = 0 at (xt, t). Therefore,∣∣∣∂tϕ̃(x, t)

∣∣∣ =
∣∣∣∂tϕ̃(x, t)− ∂tϕ̃(xt, t)

∣∣∣
≤ sup
y∈M

∂tϕ̃(y, t)− inf
y∈M

∂tϕ̃(y, t)

≤ sup
y∈M

∂tϕ(y, t)− inf
y∈M

∂tϕ(y, t) ≤ Ce−δt,

which implies that ϕ̃ + C
δ e
−δt (resp. ϕ̃ − C

δ e
−δt) is non-increasing (resp. non-

decreasing) with respect to t. It then follows from Proposition 6.1 that

lim
t→∞

ϕ̃ = ϕ∞

in the C∞ topology. Besides, ϕ̃ satisfies

∂tϕ̃ = log
(Ω + ∂∂J ϕ̃)n

Ωn
− f −

∫
M

∂tϕΩn ∧ Ω̄n.

Letting t→∞ and then we have

log
(Ω + ∂∂Jϕ∞)n

Ωn
= f + b,

where

b =

∫
M

(
log

(Ω + ∂∂Jϕ∞)n

Ωn
− f

)
Ωn ∧ Ω̄n

By Proposition 3.1, we can indeed obtain this limit. Then the proof is com-
pletely. �

Appendix A.

Let (M, I, J,K) be a hypercomplex manifold. For each p ∈ M , we can
choose an open neighborhood D 3 p. Furthermore, (D, I) is biholomorphic to
an open subset of C2n. We need the following observation.

Proposition A.1 ([3, Proposition 3.1.1]). Let D ⊂ M as above with complex
coordinates z1, . . . , z2n. At a point z ∈ D, for each real valued function u ∈
C2(M), the (2, 0)-form ∂∂Ju(z) depends only on the second derivatives u and
on the complex structure J(z) at z. Precisely,

(39) ∂∂Ju(z) =
∂2u

∂z̄j∂zi
(J−1)jkdzi ∧ dzk.
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Now we consider the following Li-Yau [20] type equation

(40) (�− ∂t)u = 0, u > 0.

Let u solve (40) and denote h = log u, ht = ∂th. Write Ωϕ = Ω + ∂∂Jϕ for
short. We consider the quantity

H = t(|∂h|2 − αht),
where α is a constant satisfying 1 < α < 2 and

|∂h|2 :=
∂h ∧ ∂Jh ∧ Ωn−1

ϕ

Ωnϕ
.

Plugging u = eh into (40) we have

(41) �h− ht = −|∂h|2.

Lemma A.2. There exists a constant C > 0 such that

(�− ∂t)H ≥
t

4n

(
|∂h|2 − ht

)2 − 2Re〈∂h, ∂H〉

−
(
|∂h|2 − αht

)
− tC|∂h|2 − Ct,

(42)

where 〈·, ·〉 is an inner product defined by 〈∂f, ∂g〉 :=
∂f∧∂Jg∧Ωn−1

ϕ

Ωnϕ
.

Proof. The proof is local. For each z ∈ M , we can find an I-complex coordi-
nates z1, . . . , z2n on a local chart D 3 z. Assume f ∈ C2(M), let fj = ∂f

∂zj
be

the ordinary derivative, we have

∂Jf = J−1(∂̄f) = fj̄J
−1(dz̄j) = f,k̄dzk;

∂∂Jf = ∂(fj̄(J
−1)jk)dzk = f,ik̄dzi ∧ dzk.

Here we use the notation

(43) f,k̄ := fj̄(J
−1)jk, f,ik̄ := fij̄(J

−1)jk + fj̄ [(J
−1)jk]i.

For each f, g ∈ C2(M,R), it is easy to verify

(44) (fg),k̄ = fg,k̄ + gf,k̄;

(45) (fg),ik̄ = fg,ik̄ + gf,ik̄ + fig,k̄ + gif,k̄.

Using (41) we know that

(46) H = −t�h− t(α− 1)ht.

It then gives us

(47) t∂t
(
�h
)

=
1

t
H − ∂tH − t(α− 1)htt.

For each k, s, we define

χ̂ks̄ :=
dzk ∧ dzs ∧ Ωn−1

ϕ

Ωnϕ
;(48)
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χks̄ :=
dzk ∧ (J−1)lsdzl ∧ Ωn−1

ϕ

Ωnϕ
.(49)

By a straightforward computation we arrive that

−∂tH =−
(
|∂h|2 − αht

)
− 2tRe

〈
∂h, ∂ht

〉
+ tαhtt + t∂t(χ

ij̄)hihj̄ ;
(50)

�H =t�(|∂h|2)− tα�ht.(51)

Now we compute

�(|∂h|2)

= n∂∂J(|∂h|2) ∧ Ωn−1
ϕ /Ωnϕ

= n
[
∂∂J(χsl̄) · hshl̄ + ∂(χsl̄) ∧ ∂J(hshl̄) + ∂J(χsl̄) ∧ ∂(hshl̄)

+ χsl̄∂∂J(hshl̄)
]
∧ Ωn−1

ϕ /Ωnϕ

= n
[
∂∂J(χsl̄)hshl̄ + ∂(χsl̄) ∧ ∂J(hshl̄) + ∂J(χsl̄) ∧ ∂(hshl̄)

]
∧ Ωn−1

ϕ /Ωnϕ

+ nχsl̄
(∂hs ∧ ∂Jhl̄ ∧ Ωn−1

ϕ

Ωnϕ
+
∂hl̄ ∧ ∂Jhs ∧ Ωn−1

ϕ

Ωnϕ

)
+ χsl̄hs�(hl̄) + χsl̄�(hs)hl̄.

(52)

Notice that Ωϕ has uniform bounded Ck norms for every k by Theorem 5.1.
Hence, analogous to the (almost) Hermitian case [12,15], we deduce

(53) |n∂∂J(χsl̄)hshl̄ ∧ Ωn−1
ϕ /Ωnϕ| ≤ C|∂h|2.

Let us define

|∂∂Jh|2 := χik̄χsl̄hsk̄hil̄, |D2h|2 := χik̄χsl̄hsihl̄k̄.

For each 0 < ε < 1, using the Cauchy-Schwarz inequality we see that∣∣n∂(χsl̄) ∧ ∂J(hshl̄) ∧ Ωn−1
ϕ /Ωnϕ|+ |n∂J(χsl̄) ∧ ∂(hshl̄) ∧ Ωn−1

ϕ /Ωnϕ
∣∣

≤ Ct

ε
|∂h|2 + 2tε|D2h|2 + 2tε|∂∂Jh|2.

(54)

By definition, we know that

nχsl̄
∂hs ∧ ∂Jhl̄ ∧ Ωn−1

ϕ

Ωnϕ
= |D2h|2;(55)

nχsl̄
∂hl̄ ∧ ∂Jhs ∧ Ωn−1

ϕ

Ωnϕ
= |∂∂Jh|2.(56)
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For every smooth real valued function v, �v = χ̂ik̄v,ik̄. Then

(�h)s − (�hs)

= (χ̂ik̄h,ik̄)s − χ̂ik̄hs,ik̄
= χ̂ik̄

(
(h,ik̄)s − hs,ik̄

)
+ (χ̂ik)sh,ik̄

= χ̂ik̄
(
hj [(J

−1)jk]is + hij̄ [(J
−1)jk]s

)
+ (χ̂ik̄)sh,ik̄.

(57)

It follows that

χsl̄hs�(hl̄) + χsl̄�(hs)hl̄ − 2Re
〈
∂h, ∂�h

〉
= χsl̄hs

(
�(hl̄)− (�h)l̄

)
+ χsl̄

(
�(hs)− (�h)s

)
hl̄

= χsl̄hs
(
χ̂ik̄
(
hj [(J

−1)jk]il̄ + hij̄ [(J
−1)jk]l̄

)
+ (χ̂ik̄)l̄h,ik̄

)
+ χsl̄

(
χ̂ik̄
(
hj [(J

−1)jk]is + hij̄ [(J
−1)jk]s

)
+ (χ̂ik̄)sh,ik̄

)
hl̄

≥ − C

ε
|∂h|2 − ε|∂∂Jh|2,

(58)

where the last inequality we have used Cauchy-Schwarz inequality. Meanwhile,

2tRe
〈
∂h, ∂�h

〉
(46)
= − 2Re

〈
∂h, ∂H

〉
− 2t(α− 1)Re〈∂h, ∂ht〉

(50)
= − 2Re

〈
∂h, ∂H

〉
− (α− 1)∂tH + (α− 1)

(
|∂h|2 − αht

)
+ t(α− 1)∂t(χ

ij̄)hihj̄ − tα(α− 1)htt

≥− 2Re
〈
∂h, ∂H

〉
− (α− 1)∂tH + (α− 1)

(
|∂h|2 − αht

)
− Ct|∂h|2 − tα(α− 1)htt.

(59)

It follows from (58) and (59) that

t
(
χsl̄hs�(hl̄) + χsl̄�(hs)hl̄

)
≥− 2Re

〈
∂h, ∂H

〉
− (α− 1)∂tH + (α− 1)

(
|∂h|2 − αht

)
− Ct|∂h|2 − tα(α− 1)htt −

t

ε
|∂h|2 − tε|∂∂Jh|2 − tε|D2h|2.

(60)

Using the Cauchy-Schwarz inequality, at z, we deduce

−αt�ht =− αt∂t(�h) + αt∂t(χ
ij̄)hij̄

(47)
= − α

t
H + α∂tH + tα(α− 1)htt + αt∂t(χ

ij̄)hij̄

≥− α

t
H + α∂tH + tα(α− 1)htt −

Ct

ε
− tε|∂∂Jh|2,

(61)

where the last inequality we have used the Proposition 6.1 (notice that Propo-

sition 6.1 implies −Cχij̄ ≤ ∂t(χij̄) ≤ Cχij̄ for a uniform constant C).
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Plugging (53) to (61) into (51), then we get

�H ≥ − Ct|∂h|2 −
(2t

ε
|∂h|2 + 2tε|D2h|2

)
−
(2t

ε
|∂h|2 + 2tε|∂∂Jh|2

)
− 2Re〈∂h, ∂H〉 − (α− 1)∂tH + (α− 1)

(
|∂h|2 − αht

)
− Ct|∂h|2 − tα(α− 1)htt −

t

ε
|∂h|2

− tε(|∂∂Jh|2 + |D2h|2) + t|D2h|2 + t|∂∂Jh|2

− α

t
H + α∂tH + tα(α− 1)htt −

Ct

ε
− tε|∂∂Jh|2

≥ t(1− 4ε)|∂∂Jh|2 + t(1− 3ε)|D2h|2 − t(C +
3

ε
)|∂h|2

−
(
|∂h|2 − αht

)
+ ∂tH − 2Re〈∂h, ∂H〉 − Ct

ε
.

Therefore, if 1
16 ≤ ε ≤

1
8 , we have

(�− ∂t)H ≥
t

2
|∂∂Jh|2 − Ct|∂h|2 −

(
|∂h|2 − αht

)
− 2Re〈∂h, ∂H〉 − Ct.(62)

Now we apply the arithmetic-geometric mean inequality, and by (41),

(63) |∂∂Jh|2 ≥
1

2n
(�h)2 =

1

2n

(
ht − |∂h|2

)2
.

Plugging into (62), one can obtain

(�− ∂t)H ≥
t

4n

(
ht − |∂h|2

)2 − Ct|∂h|2
−
(
|∂h|2 − αht

)
− 2Re〈∂h, ∂H〉 − Ct.

(64)

By the arbitrariness of z, this proves (42). �

Using the parabolic maximum principle, we can prove the following lemma.

Lemma A.3. On M × (0, T ), we have

(65) |∂h|2 − αht ≤
8nα2

t
+

√
8nα2

(
C +

nC2α2

2(α− 1)2

)
.

Proof. Let us fix an arbitrary time t0 ∈ (0, T ). Suppose H(x, t) achieves its
maximum at the point (q̂, t̂) ∈ M × [0, t0], we may assume t̂ > 0. Otherwise,
|∂h|2 − αht ≤ 0 on M × [0, t0] and we are done. It follows that

H(q̂, t̂) ≥ H(q̂, 0) = 0.

At (q̂, t̂), using maximum principle, we deduce (�− ∂t)H ≤ 0 and ∂H = 0.
Put these into (42). Hence,

t̂2

4n

(
|∂h|2 − ht

)2 − Ct̂2|∂h|2 −H ≤ Ct̂2.(66)
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Notice that at (q̂, t̂),

t̂2
(
|∂h|2 − ht

)2
=

t̂2

α2

(
|∂h|2 − αht + (α− 1)|∂h|2

)2
=
H2

α2
+
(α− 1

α

)2

t̂2|∂h|4 +
2(α− 1)t̂H

α2
|∂h|2

≥ H2

α2
+
(α− 1

α

)2

t̂2|∂h|4,

(67)

where we have used the fact that H is nonnegative at (q̂, t̂). Using the elemen-

tary inequality ax2 + bx ≥ − b2

4a , we get

(68)
1

4n

(α− 1

α

)2

t̂2|∂h|4 − t̂2C|∂h|2 ≥ − nC2α2

2(α− 1)2
t̂2.

Plugging (67) and (68) into (66), so

(69)
H2

4nα2
≤ H + Ct̂2 +

nC2α2

2(α− 1)2
t̂2;

we can deduce

(70) H(q̂, t̂) ≤ 8nα2 +

√
8nα2

(
C +

nC2α2

2(α− 1)2

)
t̂.

Hence, at each point q ∈M ,

H(q, t0) ≤H(q̂, t̂) ≤ 8nα2 +

√
8nα2

(
C +

nC2α2

2(α− 1)2

)
t0.(71)

Consequently, at (q, t0),

|∂h|2ϕ − αht ≤
8nα2

t0
+

√
8nα2

(
C +

nC2α2

2(α− 1)2

)
.

Then the lemma follows by arbitrariness of t0. �
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