과제정보
T. G. Ha was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1I1A3A01051714). S.-H. Park was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A3066250).
참고문헌
- R. Aboulaich, D. Meskine, and A. Souissi, New diffusion models in image processing, Comput. Math. Appl. 56 (2008), no. 4, 874-882. https://doi.org/10.1016/j.camwa.2008.01.017
- S. Antontsev, Wave equation with p(x, t)-Laplacian and damping term: existence and blow-up, Differ. Equ. Appl. 3 (2011), no. 4, 503-525. https://doi.org/10.7153/dea03-32
- S. Antontsev and S. Shmarev, Evolution PDEs with nonstandard growth conditions, Atlantis Studies in Differential Equations, 4, Atlantis Press, Paris, 2015. https://doi.org/10.2991/978-94-6239-112-3
- L. Diening, P. Harjulehto, P. Hasto, and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017, Springer, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-18363-8
- X. Fan, Boundary trace embedding theorems for variable exponent Sobolev spaces, J. Math. Anal. Appl. 339 (2008), no. 2, 1395-1412. https://doi.org/10.1016/j.jmaa.2007.08.003
- V. Georgiev and G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations 109 (1994), no. 2, 295-308. https://doi.org/10.1006/jdeq.1994.1051
- S. Ghegal, I. Hamchi, and S. A. Messaoudi, Global existence and stability of a nonlinear wave equation with variable-exponent nonlinearities, Appl. Anal. 99 (2020), no. 8, 1333-1343. https://doi.org/10.1080/00036811.2018.1530760
- T. G. Ha, Blow-up for semilinear wave equation with boundary damping and source terms, J. Math. Anal. Appl. 390 (2012), no. 1, 328-334. https://doi.org/10.1016/j.jmaa.2012.01.037
- T. G. Ha, Blow-up for wave equation with weak boundary damping and source terms, Appl. Math. Lett. 49 (2015), 166-172. https://doi.org/10.1016/j.aml.2015.05.003
- H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form Putt = -Au + &3x1D4D5;(u), Trans. Amer. Math. Soc. 192 (1974), 1-21. https://doi.org/10.2307/1996814
- H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal. 5 (1974), 138-146. https://doi.org/10.1137/0505015
- H. A. Levine and J. Serrin, Global nonexistence theorems for quasilinear evolution equations with dissipation, Arch. Rational Mech. Anal. 137 (1997), no. 4, 341-361. https://doi.org/10.1007/s002050050032
- H. A. Levine and G. Todorova, Blow up of solutions of the Cauchy problem for a wave equation with nonlinear damping and source terms and positive initial energy, Proc. Amer. Math. Soc. 129 (2001), no. 3, 793-805. https://doi.org/10.1090/S0002-9939-00-05743-9
- S. A. Messaoudi, J. H. Al-Smail, and A. A. Talahmeh, Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities, Comput. Math. Appl. 76 (2018), no. 8, 1863-1875. https://doi.org/10.1016/j.camwa.2018.07.035
- S. A. Messaoudi and A. A. Talahmeh, Blowup in solutions of a quasilinear wave equation with variable-exponent nonlinearities, Math. Methods Appl. Sci. 40 (2017), no. 18, 6976-6986. https://doi.org/10.1002/mma.4505
- S. A. Messaoudi, A. A. Talahmeh, and J. H. Al-Smail, Nonlinear damped wave equation: existence and blow-up, Comput. Math. Appl. 74 (2017), no. 12, 3024-3041. https://doi.org/10.1016/j.camwa.2017.07.048
- L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math. 22 (1975), no. 3-4, 273-303. https://doi.org/10.1007/BF02761595
- P. Pucci and J. Serrin, Global nonexistence for abstract evolution equations with positive initial energy, J. Differential Equations 150 (1998), no. 1, 203-214. https://doi.org/10.1006/jdeq.1998.3477
- A. Rahmoune, Existence and asymptotic stability for the semilinear wave equation with variable-exponent nonlinearities, J. Math. Phys. 60 (2019), no. 12, 122701, 23 pp. https://doi.org/10.1063/1.5089879
- M. Ruzicka, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, 1748, Springer-Verlag, Berlin, 2000. https://doi.org/10.1007/BFb0104029
- G. Todorova and E. Vitillaro, Blow-up for nonlinear dissipative wave equations in ℝn, J. Math. Anal. Appl. 303 (2005), no. 1, 242-257. https://doi.org/10.1016/j.jmaa.2004.08.039
- E. Vitillaro, A potential well theory for the wave equation with nonlinear source and boundary damping terms, Glasg. Math. J. 44 (2002), no. 3, 375-395. https://doi.org/10.1017/S0017089502030045
- E. Vitillaro, Global nonexistence theorems for a class of evolution equations with dissipation, Arch. Ration. Mech. Anal. 149 (1999), no. 2, 155-182. https://doi.org/10.1007/s002050050171