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GLOBAL NONEXISTENCE FOR THE WAVE EQUATION

WITH BOUNDARY VARIABLE EXPONENT

NONLINEARITIES

Tae Gab Ha and Sun-Hye Park

Abstract. This paper deals with a nonlinear wave equation with bound-
ary damping and source terms of variable exponent nonlinearities. This

work is devoted to prove a global nonexistence of solutions for a nonlinear

wave equation with nonnegative initial energy as well as negative initial
energy.

1. Introduction

In this paper, we consider the following the wave equation:

(1)


utt − µ(t)∆u+ h(u) = 0 in Ω × (0, T ),

u = 0 on Γ0 × (0, T ),

µ(t)∂u∂ν + |ut|m(x)−2ut = |u|p(x)−2u on Γ1 × (0, T ),

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω,

where, Ω is a bounded open domain of Rn(n ≥ 1) with a smooth boundary
Γ = Γ0 ∪ Γ1. Here, Γ0 and Γ1 are closed and disjoint with meas(Γ0) > 0. Let
ν be the outward normal to Γ and T > 0, a real number, and m(x), p(x) be
given functions.

This type of model arises in electro-rheological fluids or fluids with temper-
ature dependent viscosity, viscoelasticity, filtration processes through a porous
media and image processing (cf. [1, 20]).

The problem of proving the nonexistence or blow-up of solutions for the
wave equation has been widely studied (see [6, 8–13, 17, 18, 21–23]). Recently,
many papers have treated problems with variable exponents. For the variable
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exponent problems, the main tool is based on the Lebesgue and Sobolev spaces
with variable exponents, which was introduced in [3, 4] and has been widely
used in the literature, see [2, 7, 14–16] and the list of references therein. For
example, in [16], the authors proved the local existence of a unique weak so-
lution for the nonlinear damped wave equation and the finite time blow-up of
solutions for negative initial energies. Recently, in [7], the authors studied the
global existence of solution for (1) using the stable-set method and proved the
exponential or polynomial energy decay rate. However, the above mentioned
references was only considered interior variable exponent nonlinearities.

On the other hand, there are very few results for the boundary variable-
exponent-nonlinearity problems. In [19], the author proved the existence and
asymptotic stability for the semilinear wave equation with boundary variable
exponent nonlinearities. However, the blow-up was not considered.

Motivated by previous works, the goal of this paper is to prove a finite time
blow-up for the solution for (1) under suitable condition on the initial data
and the positive initial energy. As far as we know, there is no blow-up result
concerning the boundary variable-exponent nonlinearities.

This paper is organized as follows: In Section 2, we recall the notation,
hypotheses and some necessary preliminaries and introduce our main result.
In Section 3, we prove the blow-up of solutions for (1) with nonnegative initial
energy as well as negative initial energy.

2. Preliminaries

We begin this section by introducing some hypotheses and our main result.
Throughout this paper, || · ||p and || · ||p,Γ1 denote the Lp(Ω) norm and Lp(Γ1)
norm, respectively.

(H1) Hypotheses on Ω.
Let Ω ⊂ Rn be a bounded open domain, n ≥ 1, with a smooth boundary

Γ = Γ0 ∪ Γ1. Here Γ0 and Γ1 are closed and disjoint with meas(Γ0) > 0,
satisfying the following conditions:

(2)
w(x) · ν(x) ≥ σ > 0 on Γ1, w(x) · ν(x) ≤ 0 on Γ0,

w(x) = x− x0(x0 ∈ Rn) and R = max
x∈Ω
|w(x)|,

where ν represents the unit outward normal vector to Γ. We assume that

(3) µ(0)
∂u0

∂ν
+ |u1|m(x)−2u1 = |u0|p(x)−2u0 on Γ1.

(H2) Hypotheses on m(x), p(x).
Let m(x) and p(x) be given measurable functions on Ω̄ satisfying the follow-

ing conditions:

(4)

{
2 ≤ q− ≤ q(x) ≤ q+ < 2(n−1)

n−2 if n ≥ 3,

q− > 2 if n = 1, 2,
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where

q− = ess inf
x∈Ω̄

q(x), and q+ = ess sup
x∈Ω̄

q(x).

Furthermore, m(x) and p(x) satisfy the log-Hölder continuity condition as fol-
lows

(5) |q(x)− q(y)| ≤ − A

log |x− y|
for all x, y ∈ Ω,

with |x− y| < δ, A > 0, 0 < δ < 1.

(H3) Hypotheses on µ, h.
Let µ ∈W 1,∞(0,∞) ∩W 1,1(0,∞) satisfy the following conditions:

(6) µ(t) ≥ µ0 > 0 and µ′(t) < 0 a.e. in [0,∞),

where µ0 is a positive constant. Moreover, we assume that

(7) h : R→ R is a Lipschitz function, and 2H(s) ≥ h(s)s ≥ 0 for all s ∈ R,

where H(s) =
∫ s

0
h(τ)dτ .

In order to treat the variable-exponent nonlinearities m(x) and p(x), we need
some preliminary facts about the Lebesgue and Sobolev spaces with variable
exponents (see [3, 4]). For the reader’s convenience, we will repeat some of
them here.

Let q : Ω→ [1,∞] be a measurable function. We define the Lebesgue space
with a variable exponent q(·) by

Lq(·)(Ω):={u |u : Ω→ R measurable and

∫
Ω

|λu(x)|q(x)dx<∞ for some λ>0},

equipped the with following Luxembourg-type norm

||u||q(·),Ω = ||u||q(·) := inf{λ > 0 |
∫

Ω

∣∣∣u(x)

λ

∣∣∣q(x)

dx ≤ 1}.

Lq(·)(Ω) is a Banach space. Next, we define the Sobolev space W 1,q(·)(Ω) as
follows:

W 1,q(·)(Ω) := {u ∈ Lq(·)(Ω) such that ∇u exists and |∇u| ∈ Lq(·)(Ω)}.

This is a Banach space with respect to the norm ||u||W 1,q(·)(Ω) = ||u||q(·) +

||∇u||q(·). Furthermore, we set W
1,q(·)
0 (Ω) to be the closure of C∞0 (Ω) in the

space W 1,q(·)(Ω).

Lemma 2.1 (Poincaré’s Inequality [3, 4]). Let Ω be a bounded domain of Rn
and q(·) satisfies (5). Then

||u||q(·) ≤ C1||∇u||q(·) for all u ∈W 1,q(·)
0 (Ω),

where C1 is a positive constant which depends on q± and Ω. In particular,

||∇u||q(·) defines an equivalent norm on W
1,q(·)
0 (Ω).
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Lemma 2.2 ([3,4]). Let Ω be a bounded domain of Rn with a smooth boundary
Γ. Assume that r : Ω→ (1,∞) is a measurable function such that

1 < r− ≤ r(x) ≤ r+ < +∞ for a.e. x ∈ Ω.

If q(x), r(x) ∈ C(Ω̄) and q(x) < r∗(x) in Ω̄ with

r∗(x) =

{
nr(x)
n−r(x) if r+ < n,

∞ if r+ ≥ n.

Then the embedding W 1,r(·)(Ω) ↪→ Lq(·)(Ω) is continuous and compact.

Lemma 2.3 ([5]). Let Ω be a bounded domain in Rn, q ∈ C0,1(Ω̄), 1 < q− ≤
q(x) ≤ q+ < n. Then for any r ∈ C(Γ) with 1 ≤ r(x) ≤ (n−1)q(x)

n−q(x) , there is a

continuous trace W 1,q(·)(Ω) ↪→ Lr(·)(Γ), and when 1 ≤ r(x) < (n−1)q(x)
n−q(x) , the

trace is compact, in particular, the continuous trace W 1,q(·)(Ω) ↪→ Lq(·)(Γ) is
compact.

From Lemmas 2.2 and 2.3, we have the embedding H1
0 (Ω) ↪→ Lq(·)(Γ1),

where

H1
0 (Ω) = {u ∈ H1(Ω) : u = 0 on Γ1}

and {
2 ≤ q− ≤ q(x) ≤ q+ < 2(n−1)

n−2 if n ≥ 3,

q− > 2 if n = 1, 2,

which satisfies the inequalities

(8) ||u||q(·) ≤ C2||∇u||2 and ||u||q(·),Γ1
≤ C3||∇u||2 for all u ∈ H1

0 (Ω),

where C2 and C3 are for some positive constants.

Lemma 2.4 (Hölder’s inequality [3,4]). Let q, r, s ≥ 1 be measurable functions
defined on Ω such that

1

s(x)
=

1

q(x)
+

1

r(x)
for a.e. x ∈ Ω.

If f ∈ Lq(·)(Ω) and g ∈ Lr(·)(Ω), then fg ∈ Ls(·)(Ω),∫
Ω

|fg|s(x)dx ≤
∫

Ω

|f |q(x)dx+

∫
Ω

|g|r(x)dx

and

||fg||s(·) ≤ 2||f ||q(·)||g||r(·).

Lemma 2.5 ([3, 4]). If q : Ω̄ → [1,∞) is a continuous function satisfying
2 ≤ q1 ≤ q(x) ≤ q2 < q∗, where{

q∗ = 2n
n−2 for n ≥ 3,

q∗ =∞ for n = 1, 2.
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Then the embedding H1
0 (Ω) ↪→ Lq(·)(Ω) is continuous and compact, and we

have

(9) min
{
||u||q1

q(·),Ω̄, ||u||
q2
q(·),Ω̄

}
≤
∫

Ω̄

|u|q(x)dx ≤ max
{
||u||q1

q(·),Ω̄, ||u||
q2
q(·),Ω̄

}
.

The following theorem is the local existence of solution of problem (1), which
can be established employing the Faedo-Galerkin method as in the work of
[16,19].

Theorem 2.6. Let the initial data {u0, u1} belong to H1
0 (Ω)× L2(Ω) and the

hypotheses (H1)-(H3) hold. Additionally p(x) satisfies

(10) 2 ≤ p− ≤ p(x) ≤ p+ <
2n− 3

n− 2
if n ≥ 3.

Then problem (1) has a unique weak solution such that

u ∈ L∞((0, T );H1
0 (Ω)), L∞((0, T );L2(Ω)) ∩ Lm(·)(Γ1 × (0, T )).

In order to formulate another result, it is convenient to introduce the energy
associated with problem (1):

(11) E(t) =
1

2
||ut||22 +

1

2
µ(t)||∇u||22 +

∫
Ω

H(u)dx−
∫

Γ1

|u|p(x)

p(x)
dΓ,

where H(s) =
∫ s

0
h(τ)dτ . Then by (6),

E′(t) =
1

2
µ′(t)||∇u||22 −

∫
Γ1

|ut|m(x)dΓ ≤ 0,

which implies that E(t) is a nonincreasing function.

Theorem 2.7. Suppose that the hypotheses (H1)-(H3) hold. Moreover, we
assume that m+ < p− and,

(12) E(0) < d and η1 < ||∇u0||2 ≤ C−1
4 ,

where d = µ0

(
1
2 −

1
p−

)
η2

1, η1 =
(
µ0C

−p−
4

) 1

p−−2 and C4 = max{1, C3}. Then

the solution of problem (1) cannot exist for all time.

3. Blow-up

This section is devoted to prove Theorem 2.7. By similar arguments as in
[16] and using (8), we get the following lemma.

Lemma 3.1. Suppose that the assumption (6) holds and u is a solution of (1).
Then we have

(13)
(∫

Γ1

|u|p(x)dΓ
) s

p− ≤ C5

(
||∇u||22 +

∫
Γ1

|u|p(x)dΓ
)
,

(14)

∫
Γ1

|u|p(x)dΓ ≥ C6||u||p
−

p− ,
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(15)

∫
Γ1

|u|m(x)dΓ ≤ C7

((∫
Γ1

|u|p(x)dΓ
)m−
p−

+
(∫

Γ1

|u|p(x)dΓ
)m+

p−
)
,

where 2 ≤ s ≤ p− and C5, C6, C7 > 1 are positive constants depending only on
Ω.

The next lemma plays an essential role for the proof of the blow-up result.

Lemma 3.2. Let the assumption in Theorem 2.7 be satisfied. Then there exists
a positive constant η∗ > η1 such that

(16) ||∇u(t)||2 ≥ η∗ for all 0 < t < Tmax,

where Tmax is the maximal time of existence of the solution of (1).

Proof. Case 1 : 0 ≤ E(0) < d.
By using (11), (6), (9) and (8), we get that

(17)

E(t) ≥ 1

2
µ(t)||∇u||22 −

1

p−

∫
Γ1

|u|p(x)dΓ

≥ 1

2
µ0||∇u||22 −

1

p−
max

{
||u||p

−

p(·),Γ1
, ||u||p

+

p(·),Γ1

}
≥ 1

2
µ0||∇u||22 −

1

p−
max

{
Cp

−

3 ||∇u||
p−

2 , Cp
+

3 ||∇u||
p+

2

}
:= f(||∇u(t)||2)

for any t ∈ [0, Tmax).

We note that f(η) = g(η) for 0 ≤ η ≤ C−1
4 , where g(η) = 1

2µ0η
2 − Cp

−
4

p− ηp
−

.

It is easy to verify that g is strictly increasing on (0, η1) and strictly decreasing

on (η1,∞), where η1 =
(
µ0C

−p−
4

) 1

p−−2 is the maximum point of g(η), and
g(η1) = d. Hence we have g(η) → −∞ as η → ∞. Since E(0) < d = g(η1),
there exists η2 > η1 such that g(η2) = E(0). Therefore we obtain from (17),

g(η2) = E(0) ≥ f(||∇u0||2) = g(||∇u0||2),

which implies that η2 ≤ ||∇u0||2. From (12), we also have

(18) η2 ≤ C−1
4 .

Now we prove that

(19) ||∇u(t)||2 ≥ η2 for all 0 < t < Tmax

by using the contradiction method. Suppose that (19) does not hold. Then
there exists t∗ ∈ (0, Tmax) such that

(20) ||∇u(t∗)||2 < η2.

If ||∇u(t∗)||2 > η1, then we obtain from (17), (18) and (20),

E(t∗) ≥ f(||∇u(t∗)||2) = g(||∇u(t∗)||2) > g(η2) = E(0),

which is a contradiction with respect to the monotonicity of the energy.
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If ||∇u(t∗)||2 ≤ η1, then since η1 < η2, there exists η3 which verifies

||∇u(t∗)||2 ≤ η1 < η3 < η2 ≤ ||∇u0||2.

From the continuity of the function ||∇u(·)||2, there exists t̄ ∈ (0, t∗) verifying
||∇u(t̄)||2 = η3. Therefore from (17) and (18) we deduce

E(t̄) ≥ f(||∇u(t̄)||2) = g(||∇u(t̄)||2) > g(η2) = E(0),

which is also contradiction.
Case 2 : E(0) < 0.
There is η4 > η1 such that g(η4) = E(0), consequently, by (17) we have

g(η4) = E(0) ≥ f(||∇u0||2) = g(||∇u0||2).

From the fact g(η) is decreasing for η1 < η, we get

||∇u0||2 ≥ η4.

By the same argument as in Case 1, we obtain

||∇u(t)||2 ≥ η4 for all 0 < t < Tmax.

Let η∗ = max{η2, η4}. Then the proof of Lemma 3.2 is completed. �

Now we will prove the blow-up result in finite time. We set

(21) G(t) = E1 − E(t),

where E1 is a constant lying in (E(0), d). Then

(22) G′(t) = −E′(t) ≥
∫

Γ1

|ut|m(x)dΓ ≥ 0,

which implies that G(t) is a nondecreasing function, consequently, from Lemma
3.2 and the definition of d, and using the fact that η1 < η∗ and µ0 > 0,

(23) 0 < G(0) ≤ G(t) < d− 1

2
µ0η

2
∗ +

1

p−

∫
Γ1

|u|p(x)dΓ ≤ 1

p−

∫
Γ1

|u|p(x)dΓ.

We define

(24) L(t) = G1−δ(t) + εN(t), N(t) =

∫
Ω

utudx,

where ε > 0 will be chosen later and

(25) 0 < δ ≤ min
{p− − 2

2p−
,
p− −m+

p−(m+ − 1)

}
.

Then we have

(26) L′(t) = (1− δ)G−δ(t)G′(t) + εN ′(t).
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We are now going to analyze the last term on the right hand side of (26).
From the definition of E(t), Lemma 3.2 and (7), we have

(27)

N ′(t) = ||ut||22 − µ(t)||∇u||22 −
∫

Ω

h(u)udx+

∫
Γ1

|u|p(x)dΓ

−
∫

Γ1

|ut|m(x)−2utudΓ + θE(t)− θE(t)

≥
(

1 +
θ

2

)
||ut||22 + µ0

(θ
2
− 1
)
||∇u||22 − θE1︸ ︷︷ ︸
:=I1

+θG(t)

+
(

1− θ

p−

)∫
Γ1

|u|p(x)dΓ−
∫

Γ1

|ut|m(x)−2utudΓ︸ ︷︷ ︸
:=I2

,

provided that θ = p− − ε with 0 < ε < p− − 2.

Estimate for I1.
From Lemma 3.2 and the definition of θ, we obtain

µ0

(θ
2
− 1
)
||∇u||22 − θE1 > µ0

(p− − ε
2
− 1
)
η2

1 − (p− − ε)E1

=
(
E1 −

µ0η
2
1

2

)
ε+ µ0

(p−
2
− 1
)
η2

1 − p−E1 := F (ε).

We note that

E1 −
µ0η

2
1

2
< d− µ0η

2
1

2
= − 1

p−
µ0η

2
1 < 0

and

µ0

(p−
2
− 1
)
η2

1 − p−E1 > µ0

(p−
2
− 1
)
η2

1 − p−d = 0.

Thus, F (ε) represent a decreasing line connecting vertical and horizontal axes

points vε := µ0

(
p−

2 − 1
)
η2

1 − p−E1 and hε := vε
(µ0η

2
1

2 − E1

)−1
, respectively.

Hence, we get that

(28) µ0

(θ
2
− 1
)
||∇u||22 − θE1 > F (ε) > 0 for 0 < ε < hε.

Estimate for I2.
By multiplying by 1 = ξξ−1 for ξ > 0, and by using Lemma 2.4 with s = 1,

q(x) = m(x)
m(x)−1 and r(x) = m(x), it holds that∣∣∣∫

Γ1

|ut|m(x)−2utudΓ
∣∣∣ ≤ ∫

Γ1

ξm(x)|u|m(x)dΓ +

∫
Γ1

ξ−
m(x)
m(x)−1 |ut|m(x)dΓ.

We take ξ−
m(x)
m(x)−1 = kG−δ(t), for a large constant k to be chosen later. The

choice of ξ is allowed since G(t) > 0 for every t as (23) holds true. Hence the
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Figure 1. The figure of F (ε)

above inequality takes the form:

(29)

∫
Γ1

|ut|m(x)−1|u|dΓ ≤ kG−δ(t)G′(t) + k1−m−
Gδ(m

+−1)(t)

∫
Γ1

|u|m(x)dΓ.

Applying (15) and (23), and then using (13) with s = m−+ δp−(m+− 1) ≤
p− and s = m+ + δp−(m+ − 1) ≤ p− we deduce that

(30)

k1−m−
Gδ(m

+−1)(t)

∫
Γ1

|u|m(x)dΓ

≤ k1−m−
( 1

p−

∫
Γ1

|u|p(x)dΓ
)δ(m+−1)

∫
Γ1

|u|m(x)dΓ

≤ k1−m−
(p−)δ(1−m

+)C7

{(∫
Γ1

|u|p(x)dΓ
)m−
p−

+δ(m+−1)

+
(∫

Γ1

|u|p(x)dΓ
)m+

p−
+δ(m+−1)

}
= k1−m−

(p−)δ(1−m
+)C7

{(∫
Γ1

|u|p(x)dΓ
)m−+δp−(m+−1)

p−

+
(∫

Γ1

|u|p(x)dΓ
)m++δp−(m+−1)

p−
}

≤ 2k1−m−
(p−)δ(1−m

+)C5C7

(
||∇u||22 +

∫
Γ1

|u|p(x)dΓ
)
.

We note that from the definition of E(t) and Lemma 3.2,

1

p−

∫
Γ1

|u|p(x)dΓ ≥
∫

Γ1

|u|p(x)

p(x)
dΓ ≥ 1

2
µ0||∇u||22 − E(t)

≥ 1

2
µ0η

2
∗ − d >

1

2
µ0η

2
1 − d = d

( 2

p− − 2

)
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by the definition of d. Hence, from the above inequality and the definition of
E(t), we have

(31)

µ0||∇u||22 ≤ µ(t)||∇u||22

= 2E(t)− ||ut||22 − 2

∫
Ω

H(u)dx+ 2

∫
Γ1

|u|p(x)

p(x)
dΓ

= 2E1 − 2G(t)− ||ut||22 − 2

∫
Ω

H(u)dx+ 2

∫
Γ1

|u|p(x)

p(x)
dΓ

< 2d+
2

p−

∫
Γ1

|u|p(x)dΓ

=

∫
Γ1

|u|p(x)dΓ.

Combining (30) and (31), we obtain

(32)

k1−m−
Gδ(m

+−1)(t)

∫
Γ1

|u|m(x)dΓ

≤ 2k1−m−
(p−)δ(1−m

+)C5C7(µ−1
0 + 1)

∫
Γ1

|u|p(x)dΓ.

Therefore (29) and (32) yield

(33)

∫
Γ1

|ut|m(x)−1|u|dΓ

≤ kG−δ(t)G′(t) + 2k1−m−
(p−)δ(1−m

+)C5C7(µ−1
0 + 1)

∫
Γ1

|u|p(x)dΓ.

Combining (26), (27), (28) and (33), we have for 0 < ε < hε,

L′(t) ≥ (1− δ − εk)G−δ(t)G′(t) + ε
(

1 +
θ

2

)
||ut||22 + εθG(t)

+ ε
(

1− θ

p−
− 2k1−m−

(p−)δ(1−m
+)C5C7(µ−1

0 + 1)
)∫

Γ1

|u|p(x)dΓ.

We now choose k large enough such that

1− θ

p−
− 2k1−m−

(p−)δ(1−m
+)C5C7(µ−1

0 + 1) ≥ 0.

Once k is fixed, we take ε small enough such that 1 − δ − εk ≥ 0 and L(0) =
G1−δ(0) + εN(0) > 0, consequently, we conclude that from (14)

L′(t) ≥ C8

(
||ut||22 + ||u||p

−

p− +G(t)
)
,

where C8 is a positive constant, which implies that L(t) is a positive increasing
function. By the same arguments as in [16], page 3036, we have

L′(t) ≥ C9L
1

1−δ (t) for all t ∈ (0, Tmax),
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where C9 is a positive constant. Hence we conclude that L(t) blows up in finite
time and u also blows up in finite time. Thus the proof of Theorem 2.7 is
completed.
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variable exponents, Lecture Notes in Mathematics, 2017, Springer, Heidelberg, 2011.

https://doi.org/10.1007/978-3-642-18363-8

[5] X. Fan, Boundary trace embedding theorems for variable exponent Sobolev spaces, J.
Math. Anal. Appl. 339 (2008), no. 2, 1395–1412. https://doi.org/10.1016/j.jmaa.

2007.08.003

[6] V. Georgiev and G. Todorova, Existence of a solution of the wave equation with non-
linear damping and source terms, J. Differential Equations 109 (1994), no. 2, 295–308.

https://doi.org/10.1006/jdeq.1994.1051

[7] S. Ghegal, I. Hamchi, and S. A. Messaoudi, Global existence and stability of a nonlinear
wave equation with variable-exponent nonlinearities, Appl. Anal. 99 (2020), no. 8, 1333–

1343. https://doi.org/10.1080/00036811.2018.1530760
[8] T. G. Ha, Blow-up for semilinear wave equation with boundary damping and source

terms, J. Math. Anal. Appl. 390 (2012), no. 1, 328–334. https://doi.org/10.1016/j.

jmaa.2012.01.037

[9] T. G. Ha, Blow-up for wave equation with weak boundary damping and source terms,

Appl. Math. Lett. 49 (2015), 166–172. https://doi.org/10.1016/j.aml.2015.05.003

[10] H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations
of the form Putt = −Au + F(u), Trans. Amer. Math. Soc. 192 (1974), 1–21. https:

//doi.org/10.2307/1996814

[11] H. A. Levine, Some additional remarks on the nonexistence of global solutions to non-
linear wave equations, SIAM J. Math. Anal. 5 (1974), 138–146. https://doi.org/10.

1137/0505015

[12] H. A. Levine and J. Serrin, Global nonexistence theorems for quasilinear evolution
equations with dissipation, Arch. Rational Mech. Anal. 137 (1997), no. 4, 341–361.

https://doi.org/10.1007/s002050050032

[13] H. A. Levine and G. Todorova, Blow up of solutions of the Cauchy problem for a wave

equation with nonlinear damping and source terms and positive initial energy, Proc.

Amer. Math. Soc. 129 (2001), no. 3, 793–805. https://doi.org/10.1090/S0002-9939-
00-05743-9

[14] S. A. Messaoudi, J. H. Al-Smail, and A. A. Talahmeh, Decay for solutions of a nonlinear

damped wave equation with variable-exponent nonlinearities, Comput. Math. Appl. 76
(2018), no. 8, 1863–1875. https://doi.org/10.1016/j.camwa.2018.07.035

[15] S. A. Messaoudi and A. A. Talahmeh, Blowup in solutions of a quasilinear wave equation
with variable-exponent nonlinearities, Math. Methods Appl. Sci. 40 (2017), no. 18, 6976–
6986. https://doi.org/10.1002/mma.4505

https://doi.org/10.1016/j.camwa.2008.01.017
https://doi.org/10.1016/j.camwa.2008.01.017
https://doi.org/10.7153/dea-03-32
https://doi.org/10.7153/dea-03-32
https://doi.org/10.2991/978-94-6239-112-3
https://doi.org/10.2991/978-94-6239-112-3
https://doi.org/10.1007/978-3-642-18363-8
https://doi.org/10.1016/j.jmaa.2007.08.003
https://doi.org/10.1016/j.jmaa.2007.08.003
https://doi.org/10.1006/jdeq.1994.1051
https://doi.org/10.1080/00036811.2018.1530760
https://doi.org/10.1016/j.jmaa.2012.01.037
https://doi.org/10.1016/j.jmaa.2012.01.037
https://doi.org/10.1016/j.aml.2015.05.003
https://doi.org/10.2307/1996814
https://doi.org/10.2307/1996814
https://doi.org/10.1137/0505015
https://doi.org/10.1137/0505015
https://doi.org/10.1007/s002050050032
https://doi.org/10.1090/S0002-9939-00-05743-9
https://doi.org/10.1090/S0002-9939-00-05743-9
https://doi.org/10.1016/j.camwa.2018.07.035
https://doi.org/10.1002/mma.4505


216 T. G. HA AND S.-H. PARK

[16] S. A. Messaoudi, A. A. Talahmeh, and J. H. Al-Smail, Nonlinear damped wave equation:

existence and blow-up, Comput. Math. Appl. 74 (2017), no. 12, 3024–3041. https:

//doi.org/10.1016/j.camwa.2017.07.048

[17] L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyper-

bolic equations, Israel J. Math. 22 (1975), no. 3-4, 273–303. https://doi.org/10.1007/
BF02761595

[18] P. Pucci and J. Serrin, Global nonexistence for abstract evolution equations with positive

initial energy, J. Differential Equations 150 (1998), no. 1, 203–214. https://doi.org/
10.1006/jdeq.1998.3477

[19] A. Rahmoune, Existence and asymptotic stability for the semilinear wave equation with

variable-exponent nonlinearities, J. Math. Phys. 60 (2019), no. 12, 122701, 23 pp. https:
//doi.org/10.1063/1.5089879
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