DOI QR코드

DOI QR Code

드론 에너지원 전환의 한계 : 규제와 인증을 중심으로

Limit on transition of energy source for drone : Focusing on regulation and certification

  • 한상익 (세명대학교 스마트IT학부 )
  • 투고 : 2022.11.17
  • 심사 : 2022.12.20
  • 발행 : 2022.12.28

초록

드론 비행의 위치 인식에 있어 GPS 신호의 절대적 의존성, 비행 안정성, 배터리 한계로 인한 비행시간 문제는 드론 산업 발전의 큰 제약이 되고 있다. 특히 20분 내외의 짧은 임무 비행시간은 드론 활용에 있어 큰 걸림돌이 되고 있으며, 이를 극복하기 위해 액체수소를 에너지원으로 이용한 드론개발이 활발히 진행되고 있다. 하지만 액체수소 드론개발의 속도보다 현재의 규제 및 인증 제도 개정의 속도가 더뎌 개발 드론의 시험, 인증, 상용화에 어려움을 겪고 있으며, 이는 결국 드론 시장 선점의 문제점이 되고 있다. 본 논문에서는 수소 에너지 기반 드론개발 동향을 분석하며 규제와 인증 제도의 한계점을 소개하고 해결방안을 간략히 제시한다.

The absolute dependence on GPS signals for positioning, unstable flight, and short flight time due to battery limitations are the major problems to extend the practical use of drones in the industry. In particular, the short flight time of about 20 minutes is a big issue to the use of drones, and to overcome this, the liquid hydrogen powered drone is being actively developed. However, the revision of the current regulation and certification system for liquid hydrogen powered drone has not been completed yet, making it difficult to test, certify, and commercialize the hydrogen powered drone, which eventually becomes a problem in pre-occupying the increasing drone market. In this paper, we analyze the development trends of hydrogen powered drone and provide the current issues on regulations and certification systems for hydrogen powered drone.

키워드

참고문헌

  1. Ministry of Land, Infrastructure and Transport (2021), Domestic and Foreign Drone Industry Trends Analysis Report 
  2. Ministry of Land, Infrastructure and Transport (2017), Drone Industry Development Master Plan (2017~2016) 
  3. Ministry of Land, Infrastructure and Transport. (2020). Drone Industry Promotion Policy 2.0 
  4. Ministry of Land, Infrastructure and Transport. (2021). A plan to strengthen the competitiveness of the drone industry by supporting the commercialization of drones in daily life. 
  5. I. Sheridan. (2020) Drones and global navigation satellite systems: current evidence from polar scientists. Royal Society Open Science, 7(3), 191494 DOI : 10.1098/rsos.191494 
  6. M. A. Khan. et al. (2021) A Study on Flight Time Enhancement of Unmanned Aerial Vehicles Using Supercapacitor-Based Hybrid Electric Propulsion System. Arabian Journal for Science and Engineering, 46, 1179-1198. DOI : 10.1007/s13369-020-04941-5 
  7. J. Apeland, D. Pavlou & T. Hemmingsen (2020) Suitability Analysis of Implementing a Fuel Cell on a Multirotor Drone. Journal of Aerospace Technology and Management, 12, e3220. DOI : 10.5028/jatm.v12.1172 
  8. R. O. Stroman & M. W. Schuette & K. Swider-Lyons & J. A. Rodgers & D. J. Edwards (2014) Liquid hydrogen fuel system design and demonstration in a small long endurance air vehicle. International Journal of Hydrogen Energy, 39(21), 11279-11290. DOI : 10.1016/j.ijhydene.2014.05.065 
  9. Y. M. Cho. (2019). A Study on the Improvement of Operational Sustainability in the Military Sector by Using Drone. Sangji University Master's thesis. 
  10. W. I. Kim. (2017). Improvement plan using drones in safety management of repair facilities. Master of Chung-Ang University, Seoul. 
  11. W. S, Lee. (2013). A Study on the Roadmap for Activating Ground-Based Robots and Creating Demand, 
  12. Doosan Mobility Innovation. A durable, versatile commercial drone solution: DT30N. https://www.doosanmobility.com/en/products/drone-dt30/ 
  13. D. J. Jang et al. (2020) Development of Liquid-Hydrogen (LH2) storage tank and safety standards. Superconductivity and Cryogenics, 22(1), 4-8. 
  14. S. J. Oh et al. (2022) Search and Rescue and Disaster Response Using 5G-Based Liquid Hydrogen Drone. 2022 Journal of The Society of Disaster Information, 369-370.