DOI QR코드

DOI QR Code

Highly Active Electrocatalyst based on Ultra-low Loading of Ruthenium Supported on Titanium Carbide for Alkaline Hydrogen Evolution Reaction

  • Junghwan, Kim (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Sang-Mun, Jung (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Kyu-Su, Kim (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Sang-Hoon, You (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Byung-Jo, Lee (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Yong-Tae, Kim (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH))
  • 투고 : 2022.03.04
  • 심사 : 2022.03.25
  • 발행 : 2022.11.30

초록

With the emerging importance of catalysts for water electrolysis, developing efficient and inexpensive electrocatalysts for water electrolysis plays a vital role in renewable hydrogen energy technology. In this study, a 1nm thickness of TiC-supported Ru catalyst for hydrogen evolution reaction (HER) has been successfully fabricated using an electron (E)-beam evaporator and thermal decomposition of gaseous CH4 in a furnace. The prepared Ru/TiC catalyst exhibited an outstanding performance for alkaline hydrogen evolution reaction with an overpotential of 55 mV at 10 mA cm-2. Furthermore, we demonstrated that the outstanding HER performance of Ru/TiC was attributed to the high surface area of the support and the metal-support interaction.

키워드

과제정보

This work was supported by the grants from National Research Foundation of Korea (2019M3D1A1079306) and Korea Electric Power Corporation (R20XO02-31).

참고문헌

  1. S.-M. Jung, S.-W. Yun, J.-H. Kim, S.-H. You, J. Park, S. Lee, S. H. Chang, S. C. Chae, S. H. Joo, Y. Jung, J. Lee, J. Son, J. Snyder, V. Stamenkovic, N. M. Markovic, and Y.-T. Kim, Nat. Catal., 2020, 3(8), 639-648. https://doi.org/10.1038/s41929-020-0475-4
  2. S.-M. Jung, J. Kwon, J. Lee, K. Shim, D. Park, T. Kim, Y. H. Kim, S. J. Hwang, Y.-T. Kim, and Y.-T. Kim, ACS Appl. Energy Mater., 2020, 3(7), 6383-6390. https://doi.org/10.1021/acsaem.0c00586
  3. W. Kuckshinrichs, T. Ketelaer, and J. C. Koj, Front. Energy Res., 2017, 5, 1.
  4. N. Cheng, S. Stambula, D. Wang, M. N. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T. K. Sham, L. M. Liu, G. A. Botton, and X. Sun, Nat. Commun., 2016, 7, 13638.
  5. J. Zhang, Y. Zhao, X. Guo, C. Chen, C.-L. Dong, R.-S. Liu, C.-P. Han, Y. Li, Y. Gogotsi, and G. Wang, Nat. Catal., 2018, 1(12), 985-992. https://doi.org/10.1038/s41929-018-0195-1
  6. D. V. Esposito, S. T. Hunt, A. L. Stottlemyer, K. D. Dobson, B. E. McCandless, R. W. Birkmire, and J. G. Chen, Angew. Chem. Int. Ed., 2010, 49(51), 9859-9862. https://doi.org/10.1002/anie.201004718
  7. M. Tavakkoli, N. Holmberg, R. Kronberg, H. Jiang, J. Sainio, E. I. Kauppinen, T. Kallio, and K. Laasonen, ACS Catal., 2017, 7(5), 3121-3130. https://doi.org/10.1021/acscatal.7b00199
  8. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, Nat. Mater., 2013, 12(9), 850-855. https://doi.org/10.1038/nmat3700
  9. M. Gong, W. Zhou, M. C. Tsai, J. Zhou, M. Guan, M. C. Lin, B. Zhang, Y. Hu, D. Y. Wang, J. Yang, S. J. Pennycook, B. J. Hwang, and H. Dai, Nat. Commun., 2014, 5, 4695.
  10. J. Kibsgaard and T. F. Jaramillo, Angew. Chem. Int. Ed., 2014, 53(52), 14433-14437. https://doi.org/10.1002/anie.201408222
  11. C. Wan, Y. N. Regmi, and B. M. Leonard, Angew. Chem. Int. Ed., 2014, 53(25), 6407-6410. https://doi.org/10.1002/anie.201402998
  12. J. Kim, H. Jung, S.-M. Jung, J. Hwang, D. Y. Kim, N. Lee, K.-S. Kim, H. Kwon, Y.-T. Kim, J. W. Han, and J. K. Kim, J. Am. Chem. Soc., 2020, 143(3), 1399-1408.
  13. P. Quaino, F. Juarez, E. Santos, and W. Schmickler, Beilstein J. Nanotechnol., 2014, 5(1), 846-854. https://doi.org/10.3762/bjnano.5.96
  14. S. Trasatti, J. Electroanal. Chem. Interf. Electrochem., 1972, 39(1), 163-184. https://doi.org/10.1016/S0022-0728(72)80485-6
  15. Y. Lee, J. Suntivich, K. J. May, E. E. Perry, and Y. Shao-Horn, J. Phys. Chem. Lett., 2012, 3(3), 399-404. https://doi.org/10.1021/jz2016507
  16. Z. Pu, I. S. Amiinu, Z. Kou, W. Li, and S. Mu, Angew. Chem. Int. Ed., 2017, 56(38), 11559-11564. https://doi.org/10.1002/anie.201704911
  17. J. Wang, Z. Wei, S. Mao, H. Li, and Y. Wang, Energy Environ. Sci., 2018, 11(4), 800-806.
  18. J. Feng, F. Lv, W. Zhang, P. Li, K. Wang, C. Yang, B. Wang, Y. Yang, J. Zhou, and F. Lin, Adv. Mater., 2017, 29(47), 1703798.
  19. P. Quaino, E. Santos, H. Wolfschmidt, M. Montero, and U. Stimming, Catalysis today, 2011, 177(1), 55-63. https://doi.org/10.1016/j.cattod.2011.05.004
  20. M. E. Bjorketun, G. S. Karlberg, J. Rossmeisl, I. Chorkendorff, H. Wolfschmidt, U. Stimming, and J. K. Norskov, Phys. Rev. B, 2011, 84(4), 045407. https://doi.org/10.1103/PhysRevB.84.041403
  21. P. J. Schafer and L. A. Kibler, Phys. Chem. Chem. Phys., 2010, 12(46), 15225-15230. https://doi.org/10.1039/c0cp00780c
  22. S.-Y. Bae, J. Mahmood, I.-Y. Jeon, and J.-B. Baek, Nanoscale Horiz., 2020, 5(1), 43-56. https://doi.org/10.1039/c9nh00485h
  23. Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, M. Jaroniec, and S.-Z. Qiao, J. Am. Chem. Soc., 2016, 138(49), 16174-16181. https://doi.org/10.1021/jacs.6b11291
  24. Shanghai Metals Market. https://price.metal.com/OtherPrecious-Metals (accessed 26 November 2021).
  25. Z.-F. Huang, J. Song, K. Li, M. Tahir, Y.-T. Wang, L. Pan, L. Wang, X. Zhang, and J.-J. Zou, J. Am. Chem. Soc., 2016, 138(4), 1359-1365. https://doi.org/10.1021/jacs.5b11986
  26. D. Strmcnik, P. P. Lopes, B. Genorio, V. R. Stamenkovic, and N. M. Markovic, Nano Energy, 2016, 29, 29-36. https://doi.org/10.1016/j.nanoen.2016.04.017
  27. X. Wang, R. Kumar, and D. J. Myers, Electrochem. Solid-State Lett., 2006, 9(5), A225.
  28. F. Kodera, Y. Kuwahara, A. Nakazawa, and M. Umeda, J. Power Sources, 2007, 172(2), 698-703. https://doi.org/10.1016/j.jpowsour.2007.05.016
  29. W. Sheng, H. A. Shao-Horn, and S.-H. Yang, J. Electrochem. Soc., 2010, 157(11), B1529.
  30. J. Mahmood, F. Li, S.-M. Jung, M. S. Okyay, I. Ahmad, S.-J. Kim, N. Park, H. Y. Jeong, and J.-B. Baek, Nat. nanotechnol., 2017, 12(5), 441-446. https://doi.org/10.1038/nnano.2016.304
  31. B.-J. Lee, S.-M. Jung, J. Kwon, J. Lee, K.-S. Kim, and Y.-T. Kim, ACS Appl. Energy Mater., 2022, 5(2), 2130-2137.
  32. Y.-J. Kim, H. Chung, and S.-J. Kang, Compos. Part A: Appl. Sci. Manuf., 2001, 32(5), 731-738. https://doi.org/10.1016/S1359-835X(99)00092-5
  33. C. C. McCrory, S. Jung, J. C. Peters, and T. F. Jaramillo, J. Am. Chem. Soc., 2013, 135(45), 16977-16987. https://doi.org/10.1021/ja407115p
  34. J. F. Shackelford, Y.-H. Han, S. Kim, and S.-H. Kwon, CRC materials science and engineering handbook, 4th Ed., CRC press, 2016.
  35. N. Selvakumar and H. C. Barshilia, Sol. Energy Mater. Sol. Cells, 2012, 98, 1-23. https://doi.org/10.1016/j.solmat.2011.10.028
  36. C. I. Hiley, M. R. Lees, J. M. Fisher, D. Thompsett, S. Agrestini, R. I. Smith, and R. I. Walton, Angew. Chem. Int. Ed., 2014, 53(17), 4423-4427. https://doi.org/10.1002/anie.201310110
  37. K. Sardar, E. Petrucco, C. I. Hiley, J. D. Sharman, P. P. Wells, A. E. Russell, R. J. Kashtiban, J. Sloan, and R. I. Walton, Angew. Chem. Int. Ed., 2014, 53(41), 10960-10964. https://doi.org/10.1002/anie.201406668