DOI QR코드

DOI QR Code

Self-Heating Effects in β-Ga2O3/4H-SiC MESFETs

β-Ga2O3/4H-SiC MESFETs에서의 Self-Heating

  • Kim, Min-Yeong (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Seo, Hyun-Su (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Seo, Ji-Woo (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Jung, Seung-Woo (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Lee, Hee-Jae (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Byun, Dong-Wook (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Shin, Myeong-Cheol (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Schweitz, Michael A. (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Koo, Sang-Mo (Department of Electronic Materials Engineering, Kwangwoon University)
  • 김민영 (광운대학교 전자재료공학과) ;
  • 서현수 (광운대학교 전자재료공학과) ;
  • 서지우 (광운대학교 전자재료공학과) ;
  • 정승우 (광운대학교 전자재료공학과) ;
  • 이희재 (광운대학교 전자재료공학과) ;
  • 변동욱 (광운대학교 전자재료공학과) ;
  • 신명철 (광운대학교 전자재료공학과) ;
  • ;
  • 구상모 (광운대학교 전자재료공학과)
  • Received : 2021.08.31
  • Accepted : 2021.09.24
  • Published : 2022.01.01

Abstract

Despite otherwise advantageous properties, the performance and reliability of devices manufactured in β-Ga2O3 on semi-insulating Ga2O3 substrates may degrade because of poorly mitigated self-heating, which results from the low thermal conductivity of Ga2O3 substrates. In this work, we investigate and compare self-heating and device performance of β-Ga2O3 MESFETs on substrates of semi-insulating Ga2O3 and 4H-SiC. Electron mobility in β-Ga2O3 is negatively affected by increasing lattice temperature, which consequently also negatively influences device conductance. The superior thermal conductivity of 4H-SiC substrates resulted in reduced β-Ga2O3 lattice temperatures and, thus, mitigates MESFET drain current degradation. This, in turn, allows practically reduced device dimensions without deteriorating the performance and improved device reliability.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea grant (2021R1F1A1057620) funded by MSIT, Technology Innovation Program (20016102) funded by MOTIE, Korea, and the Excellent Researcher Support project of Kwangwoon University in 2021.

References

  1. Y. J. Lee, M. A. Schweitz, J. M. Oh, and S. M. Koo, Materials, 13, 434 (2020). [DOI: https://doi.org/10.3390/ma13020434]
  2. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett., 100, 013504 (2012). [DOI: https://doi.org/10.1063/1.3674287]
  3. D. W. Byun, Y. J. Lee, J. M. Oh, M. A. Schweitz, and S. M. Koo, Electron. Mater. Lett., 17, 479 (2021). [DOI: https://doi.org/10.1007/s13391-021-00297-6]
  4. S. A. Russell, A. Perez-Tomas, C. F. McConville, C. A. Fisher, D. P. Hamilton, P. A. Mawby, and M. R. Jennings, IEEE J. Electron Devices Soc., 5, 256 (2017). [DOI: https://doi.org/10.1109/JEDS.2017.2706321]
  5. B. J. Baliga, IEEE Electron Device Lett., 10, 455 (1989). [DOI: https://doi.org/10.1109/55.43098]
  6. B. K. Mahajan, Y. P. Chen, J. Noh, P. D. Ye, and M. A. Alam, Appl. Phys. Lett., 115, 173508 (2019). [DOI: https://doi.org/10.1063/1.5116828]
  7. S. Perichon, V. Lysenko, B. Remaki, D. Barbier, and B. Champagnon, J. Appl. Phys., 86, 4700 (1999). [DOI: https://doi.org/10.1063/1.371424]
  8. Y. Chang, Y. Zhang, Y. Zhang, and K. Y. Tong, J. Appl. Phys., 99,044501 (2006). [DOI: https://doi.org/10.1063/1.2171776]
  9. Z. Ramezani and A. A. Orouji, IEEE Trans. Electron Devices, 61, 3570 (2014). [DOI: https://doi.org/10.1109/TED.2014.2352317]
  10. S. Jo, G. Yoo, and J. Heo, J. Korean Phys. Soc., 74, 1171 (2019). [DOI: https://doi.org/10.3938/jkps.74.1171]
  11. A. S. Royet, T. Ouisse, B. Cabon, O. Noblanc, C. Arnodo, and C. Brylinski, IEEE Trans. Electron Devices, 47, 2221 (2000). [DOI: https://doi.org/10.1109/16.877187]
  12. T. H. Shim, S. J. Kim, G. S. Lee, K. S. Kim, W. J. Cho, and J. G. Park, J. Appl. Phys., 103, 094522 (2008). [DOI: https://doi.org/10.1063/1.2913498]
  13. M. Higashiwaki, K. Sasaki, T. Kamimura, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett., 103, 123511 (2013). [DOI: https://doi.org/10.1063/1.4821858]
  14. J. Cho, Z. Li, M. Asheghi, and K. E. Goodson, Annu. Rev. Heat Transfer, 18, 7 (2015). [DOI: https://doi.org/10.1615/Annual RevHeatTransfer.2015011335]
  15. J. W. Yu, P. C. Yeh, S. L. Wang, Y. R. Wu, M. H. Mao, H. H. Lin, and L. H. Peng, Appl. Phys. Lett., 101, 183501 (2012). [DOI: https://doi.org/10.1063/1.4764554]
  16. D. Madadi and A. A. Orouji, Mater. Today Commun., 26, 102044 (2021). [DOI: https://doi.org/10.1016/j.mtcomm.2021.102044]
  17. J. Oh, J. Ma, and G. Yoo, Results Phys., 13, 102151 (2019). [DOI: https://doi.org/10.1016/j.rinp.2019.02.087]