DOI QR코드

DOI QR Code

Study of cracks in compressed concrete specimens with a notch and two neighboring holes

  • 투고 : 2021.06.25
  • 심사 : 2022.12.02
  • 발행 : 2022.11.25

초록

This paper investigated computationally and experimentally the interaction here between a notch as well as a micropore under uniaxial compression. Brazilian tensile strength, uniaxial tensile strength, as well as biaxial tensile strength are used to calibrate PFC2d at first. Then, uniaxial compression test was conducted which they included internal notch and micro pore. Experimental and numerical building of 9 models including notch and micro pore were conducted. Model dimensions of models are 10 cm × 10 cm × 5 cm. Joint length was 2 cm. Joints angles were 30°, 45° and 60°. The position of micro pore for all joint angles was 2cm upper than top of the joint, 2 cm upper than middle of joint and 2 cm upper than the joint lower tip, discreetly. The numerical model's dimensions were 5.4 cm × 10.8 cm. The fractures were 2 cm in length and had angularities of 30, 45, and 60 degrees. The pore had a diameter of 1 cm and was located at the top of the notch, 2 cm above the top, 2 cm above the middle, and 2 cm above the bottom tip of the joint. The uniaxial compression strength of the model material was 10 MPa. The local damping ratio was 0.7. At 0.016 mm per second, it loaded. The results show that failure pattern affects uniaxial compressive strength whereas notch orientation and pore condition impact failure pattern. From the notch tips, a two-wing fracture spreads almost parallel to the usual load until it unites with the sample edge. Additionally, two wing fractures start at the hole. Both of these cracks join the sample edge and one of them joins the notch. The number of wing cracks increased as the joint angle rose. There aren't many AE effects in the early phases of loading, but they quickly build up until the applied stress reaches its maximum. Each stress decrease was also followed by several AE effects. By raising the joint angularities from 30° to 60°, uniaxial strength was reduced. The failure strengths in both the numerical simulation and the actual test are quite similar.

키워드

참고문헌

  1. Adiyaman, G., Yaylaci, M. and Birinci, A. (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng. Mech., Int. J., 54(1), 69-85. https://doi.org/10.12989/sem.2015.54.1.069 
  2. Afrazi, M., Lin, Q. and Fakhimi, A. (2022), "Physical and numerical evaluation of mode II fracture of quasi-brittle materials", Int. J. Civil Eng., 20, 993-1007. https://doi.org/10.1007/s40999-022-00718-z 
  3. Antunes, F.V. and Rodrigues, D.M. (2008), "Numerical simulation of plasticity induced crack closure: Identification and discussion of parameters", Eng. Fract. Mech., 75(10), 3101-3120. https://doi.org/10.1016/j.engfracmech.2007.12.009 
  4. Armaghani, D.J., Amin, M.F.M., Yagiz, S., Faradonbeh, R.S. and Abdullah, R.A. (2016), "Prediction of the uniaxial compressive strength of sandstone using various modeling techniques", Int. J. Rock Mech. Min. Sci., 85, 174-186. https://doi.org/10.1016/j.ijrmms.2016.03.018 
  5. Armaghani, D.J., Safari, V., Fahimifar, A., Monjezi, M. and Mohammadi, M.A. (2018), "Uniaxial compressive strength prediction through a new technique based on gene expression programming", Neural Comput. Applicat., 30, 3523-3532. https://doi.org/10.1007/s00521-017-2939-2 
  6. Backers, T., Dresen, G., Rybacki, E. and Stephansson, O. (2004), "New data on mode II fracture toughness of rock from the punchthrough shear test", Int. J. Rock Mech. Min. Sci., 41, 2-7. https://doi.org/10.1016/j.ijrmms.2004.03.010 
  7. Bian, L.C. and Kim, K.S. (2004), "The minimum plastic zone radius criterion for crack initiation direction applied to surface cracks and through-cracks under mixed mode loading", Int. J. Fatig., 26(11), 1169-1178. https://doi.org/10.1016/j.ijfatigue.2004.04.006 
  8. Cao, R.H., Cao, P., Lin, H., Ma, G.W., Fan, X. and Xiong, X.G. (2018), "Mechanical behavior of an opening in a jointed rock-like specimen under uniaxial loading: experimental studies and particle mechanics approach", Archives Civil Mech. Eng., 18(1), 198-214. https://doi.org/10.1016/j.acme.2017.06.010 
  9. Caputo, F., Lamanna, G. and Soprano, A. (2012), "Geometrical parameters influencing a hybrid mechanical coupling", Key Eng. Mater., 3(4), 525-526. https://doi.org/10.4028/www.scientific.net/KEM.525-526.161 
  10. Caputo, F., Lamanna, G. and Soprano, A. (2013), "On the evaluation of the plastic zone size at the crack tip", Eng. Fract. Mech., 103, 162-173. https://doi.org/10.1016/j.engfracmech.2012.09.030 
  11. de Castro, J.T.P., Meggiolaro, M.A. and de Oliveira Miranda, A.C. (2009), "Fatigue crack growth predictions based on damage accumulation calculations ahead of the crack tip", Compos. Mater. Sci., 46(1), 115-123. https://doi.org/10.1016/j.commatsci.2009.02.012 
  12. Dong, T., Cao, P., Lin, Q., Wang, F., Liu, Z., Hao, J. and Xie, Y. (2020), "Size effect on mechanical properties of rock-like materials with three joints", Geotech. Geol. Eng., 38(11), 55-66. https://doi.org/10.1007/s43452-020-00027-z 
  13. Fowell, R.J. (1995), "Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens", Int. J. Rock Mech. Min. Sci. Geomech. Abstracts, 32(1), 57-64. https://doi.org/10.1016/0148-9062(94)00015-U 
  14. Gui, Y.L., Zhao, Z.Y., Zhang, C. and Ma, S.Q. (2017), "Numerical investigation of the opening effect on the mechanical behaviours in rocks under uniaxial loading using hybrid continuum-discrete element method", Comput. Geotech., 90, 55-72. https://doi.org/10.1016/j.compgeo.2017.05.021 
  15. Guo, Q., Su, H., Liu, J., Yin, Q., Jing, H. and Yu, L. (2020), "An experimental study on the fracture behaviors of marble specimens subjected to high temperature treatment", Eng. Fract. Mech., 225, 106862. https://doi.org/10.1016/j.engfracmech.2019.106862 
  16. Haeri, H. (2015a), Coupled Experimental-Numerical Fracture Mechanics, Lambert Academic Press, Germany 
  17. Haeri, H. (2015b), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, Int. J., 16(4), 605-623. https://doi.org/10.12989/cac.2015.16.4.605 
  18. Haeri, H., Sarfarazi, V., Zhu, Z. and Marji, M.F. (2019), "Experimental and numerical studies of the pre-existing cracks and pores interaction in concrete specimens under compression", Smart Struct. Syst., Int. J., 23(5), 47-59. https://doi.org/10.12989/sss.2019.23.5.479 
  19. Hori, M. and Nemat-Nasser, S. (1987), "Interacting micro-cracks near the tip in the process zone of a macro-crack", J. Mech. Phys. Solid., 35(5), 601-629. https://doi.org/10.1016/0022-5096(87)90019-6 
  20. Huang, Y.H., Yang, S.Q., Ranjith, P.G. and Zhao, J. (2017), "Strength failure behavior and crack evolution mechanism of granite containing pre-existing non-coplanar holes: experimental study and particle flow modeling", Comput. Geotech., 88, 82-198. https://doi.org/10.1016/j.compgeo.2017.03.015 
  21. Jiang, Z., Wan, S., Zhong, Z., Li, M. and Shen, K. (2014), "Determination of mode-I fracture toughness and non-uniformity for GFRP double cantilever beam specimens with an adhesive layer", Eng. Fract. Mech., 128, 139-156. https://doi.org/10.1016/j.engfracmech.2014.07.011 
  22. Kuang, J.H. and Chen, Y.C. (1997), "The tip plastic strain energy applied to ductile fracture initiation under mixed-mode loading", Eng. Fract. Mech., 58, 61-70. https://doi.org/10.1016/S0013-7944(97)00073-8 
  23. Lajtai, E.Z. and Lajtai, V.N. (1975), "The collapse of cavities", Int. J. Rock Mech. Mining Sci. Geomech. Abstracts, 12(4), 81-86. https://doi.org/10.1016/0148-9062(75)90001-7 
  24. Lin, P., Wong, R.H. and Tang, C.A. (2015), "Experimental study of coalescence mechanisms and failure under uniaxial compression of granite containing multiple holes", Int. J. Rock Mech. Min. Sci., 77, 313-327. https://doi.org/10.1016/j.ijrmms.2015.04.017 
  25. Lin, Q., Cao, P., Mao, S., Ou, C. and Cao, R. (2020a), "Fatigue behavior and constitutive model of yellow sandstone containing pre-existing surface crack under uniaxial cyclic loading", Theor. Appl. Fract. Mech., 109, 77-88. https://doi.org/10.1016/j.tafmec.2020.102776 
  26. Lin, Q., Cao, P., Meng, J., Cao, R. and Zhao, Z. (2020b), "Strength and failure characteristics of jointed rock mass with double circular holes under uniaxial compression: Insights from discrete element method modelling", Theoretical and Applied Fracture Mechanics, 109, 79-89. https://doi.org/10.1016/j.tafmec.2020.102692 
  27. Lin, Q., Cao, P., Cao, R., Lin, H. and Meng, J. (2020c), "Mechanical behavior around double circular openings in a jointed rock mass under uniaxial compression", Arch. Civil Mech. Eng., 20(1), 1-18. https://doi.org/10.1007/s43452-020-00027-z 
  28. Lin, Q., Cao, P., Wen, G., Meng, J., Cao, R. and Zhao, Z. (2021a), "Crack coalescence in rock-like specimens with two dissimilar layers and pre-existing double parallel joints under uniaxial compression", Int. J. Rock Mech. Min. Sci., 139(4), 121-133. https://doi.org/10.1016/j.ijrmms.2021.104621 
  29. Lin, Q., Cao, P., Liu, Y., Cao, R. and Li, J. (2021b), "Mechanical behaviour of a jointed rock mass with a circular hole under compression-shear loading: Experimental and numerical studies", Theor. Appl. Fract. Mech., 114, 121-133. https://doi.org/10.1016/j.tafmec.2021.102998 
  30. Momeni, E., Armaghani, D.J., Hajihassani, M. and Amin, M.F.M. (2015), "Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks", Measurement, 60, 50-63. https://doi.org/10.1016/j.measurement.2014.09.075 
  31. Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398. https://doi.org/10.1016/j.engstruct.2013.11.005 
  32. Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., Int. J., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607 
  33. Oudad, W., Bouiadjra, B.B., Belhouari, M., Touzain, S. and Feaugas, X. (2009), "Analysis of the plastic zone size ahead of repaired cracks with bonded composite patch of metallic aircraft structures", Comput. Mater. Sci., 46(4), 950-954. https://doi.org/10.1016/j.commatsci.2009.04.041 
  34. Rice, J.R. and Rosengren, G.F. (1968), "Plane strain deformation near a crack tip in a power-law hardening material", J. Mech. Phys. Solid., 16(1), 1-12. https://doi.org/10.1016/0022-5096(68)90013-6 
  35. Rose, L.R.F. (1986), "Microcrack interaction with a main crack", Int. J. Fract., 31(3), 233-242. https://doi.org/10.1007/BF00018929 
  36. Rubinstein, A.A. (1986), "Macrocrack-microdefect interaction", J. Appl. Mech., 53(3), 505-510. https://doi.org/10.1115/1.3171803 
  37. Sarfarazi, V., Faridi, H.R. and and Schubert, W. (2016), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., Int. J., 3(4), 269-282. https://doi.org/10.12989/acc.2015.3.4.269 
  38. Sarfarazi, V., Haeri, H. and Shemirani, A.B. (2017), "Direct and indirect methods for determination of mode I fracture toughness using PFC2D", Comput. Concrete, Int. J., 20(1), 79-89. https://doi.org/10.12989/cac.2017.20.1.039 
  39. Shemirani, A.B., Amini, M.S., Sarfarazi, V., Shahriar, K., Moarefvand, P. and Haeri, H. (2021), "Experimental and numerical investigation of the effect of bridge area and its angularities on the failure mechanism of non-persistent crack in concrete-like materials", Smart Struct. Syst., Int. J., 27(3), 54-67. https://doi.org/10.12989/sss.2021.27.3.479 
  40. Sousa, R.A., Castro, J.T.P., Lopes, A.A.O. and Martha, L.F. (2013), "On improved crack tip plastic zone estimates based on T-stress and on complete stress fields", Fatigue Fract. Eng. Mater. Struct., 36(1), 25-38. https://doi.org/10.1111/j.1460-2695.2012.01684.x 
  41. Wong, R.H.C., Lin, P. and Tang, C.A. (2006), "Experimental and numerical study on splitting failure of brittle solids containing single pore under uniaxial compression", Mech. Mater., 38(1-2), 142-159. https://doi.org/10.1016/j.mechmat.2005.05.017 
  42. Wu, H., Zhao, G. and Liang, W. (2019), "Mechanical properties and fracture characteristics of pre-holed rocks subjected to uniaxial loading: a comparative analysis of five hole shapes", Theor. Appl. Fract. Mech., 105, 102433. https://doi.org/10.1016/j.tafmec.2019.102433 
  43. Xin, G., Hangong, W., Xingwu, K. and Liangzhou, J. (2010), "Analytic solutions to crack tip plastic zone under various loading conditions", Eur. J. Mech. A-Solid., 29(4), 738-745. https://doi.org/10.1016/j.euromechsol.2010.03.003 
  44. Yang, S.Q. (2011), "Crack unifies behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure", Eng. Fract. Mech., 78(17), 3059-3081. https://doi.org/10.1016/j.engfracmech.2011.09.002 
  45. Yang, X., Jing, H. and Chen, K. (2016), "Numerical simulations of failure behavior around a circular opening in a non-persistently jointed rock mass under biaxial compression", Int. J. Mining Sci. Technol., 26(4), 729-738. https://doi.org/10.1016/j.ijmst.2016.05.027 
  46. Yang, X.X., Jing, H.W., Chen, K.F. and Yang, S.Q. (2017), "Failure behavior around a circular opening in a rock mass with non-persistent joints: a parallel-bond stress corrosion approach", J. Central South University, 24(10), 2406-2420. https://doi.org/10.1007/s11771-017-3652-0 
  47. Yang, S.Q., Yin, P.F., Zhang, Y.C., Chen, M., Zhou, X.P., Jing, H.W. and Zhang, Q.Y. (2019), "Failure behavior and crack evolution mechanism of a non-persistent jointed rock mass containing a circular hole", Int. J. Rock Mech. Min. Sci., 114, 101-121. https://doi.org/10.1016/j.ijrmms.2018.12.017 
  48. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., Int. J., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143 
  49. Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., Int. J., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241 
  50. Yaylaci, E.U., Yaylaci, M., Olmez, H. and Birinci, A. (2020a), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, Int. J., 25(6), 55-66. https://doi.org/10.12989/cac.2020.25.6.055 
  51. Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2020b), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., Int. J., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325 
  52. Yaylaci, M., Eyuboglu, A., Adiyaman, G., Yaylaci, E.U., Oner, E. and Birinci, A. (2021a), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 22(1), 44-56. https://doi.org/10.1016/j.mechmat.2020.103730 
  53. Yaylaci, M., Yayli, M., Yaylaci, E.U., Olmez, H. and Birinci, A. (2021b), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., Int. J., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585 
  54. Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2021c), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, Int. J., 27(3), 210-219. https://doi.org/10.12989/cac.2021.27.3.199 
  55. Yi, H., Jingjie, C. and Gang, L. (2010), "A new method of plastic zone size determined based on maximum crack opening displacement", Eng. Fract. Mech., 77, 2912-2918. https://doi.org/10.1016/j.engfracmech.2010.06.026 
  56. Yoshihara, H. (2013), "Initiation and propagation fracture toughness of solid wood under the mixed Mode I/II condition examined by mixed-mode bending test", Eng. Fract. Mech., 104, 1-15. https://doi.org/10.1016/j.engfracmech.2013.03.023 
  57. Zeng, G., Yang, X., Yin, A. and Bai, F. (2014), "Simulation of damage evolution and crack propagation in three-point bending pre-cracked asphalt mixture beam", Constr. Build. Mater., 55, 323-332. https://doi.org/10.1016/j.conbuildmat.2014.01.058
  58. Zeng, W., Yang, S.Q. and Tian, W.L. (2018), "Experimental and numerical investigation of brittle sandstone specimens containing different shapes of holes under uniaxial compression", Eng. Fract. Mech., 200, 430-450. https://doi.org/10.1016/j.engfracmech.2018.08.016 
  59. Zhang, C., Feng, X.T., Zhou, H., Qiu, S. and Wu, W. (2012), "Case histories of four extremely intense rockbursts in deep tunnels", Rock Mech. Rock Eng., 45(3), 275-288. https://doi.org/10.1007/s00603-011-0218-6 
  60. Zhang, X., Bayat, V., Koopialipoor, M., Armaghani, D.J., Yong, W. and Zhou, J. (2020), "Evaluation of structural safety reduction due to water penetration into a major structural crack in a large concrete project", Smart Struct. Syst., Int. J., 26(3), 319-329. https://doi.org/10.12989/sss.2020.26.3.319 
  61. Zhao, X.D., Zhang, H.X. and Zhu, W.C. (2014), "Fracture evolution around pre-existing cylindrical cavities in brittle rocks under uniaxial compression", Trans. Nonferrous Metals Soc. China, 24(3), 806-815. https://doi.org/10.1016/S1003-6326(14)63129-0 
  62. Zhu, Q., Li, D., Han, Z., Li, X. and Zhou, Z. (2019), "Mechanical properties and fracture evolution of sandstone specimens containing different inclusions under uniaxial compression", J. Rock Mech. Min. Sci., 115, 33-47. https://doi.org/10.1016/j.ijrmms.2019.01.010