DOI QR코드

DOI QR Code

Wave propagation in an FG circular plate in thermal environment

  • Gui-Lin, She (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Yin-Ping, Li (College of Mechanical and Vehicle Engineering, Chongqing University)
  • 투고 : 2021.10.07
  • 심사 : 2022.12.15
  • 발행 : 2022.12.25

초록

In this paper, considering the temperature dependence of material physical parameters as well as the effects of thermal effect and shear deformation, we have conducted an in-depth study on the wave propagation of functionally graded (FG) materials circular plate in thermal environment based on the physical neutral surface concept. The dynamic governing equations of functionally graded plates are established, and the dispersion relation of wave propagation is derived. The influence of different temperature fields on the propagation characteristics of flexural waves in FG circular plates is discussed in detail. It can be found that the phase velocity and group velocity of wave propagation in the plate decrease with the increase of temperature.

키워드

과제정보

The authors acknowledge this work is supported by the Hunan Provincial Innovation Foundation for Postgraduate (CX20190258).

참고문헌

  1. Ahmadi, H. (2019), "Nonlinear primary resonance of imperfect spiral stiffened functionally graded cylindrical shells surrounded by damping and nonlinear elastic foundation", Eng. Comput., 35, 1491-1505. http://doi.org/10.1007/s00366-018-0679-2.
  2. Akgoz, B. and Civalek, O. (2017), "Effects of thermal and shear  deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B.-Eng., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024.
  3. Amar, L.H.H., Kaci, A., Yeghnem, R. and Tounsi, A. (2018), "Anew four-unknown refined theory based on modified couple stress theory for size-dependent bending and vibration analysisof functionally graded micro-plate", Steel Compos. Struct., 26(1), 89-102. https://doi.org/10.12989/scs.2018.26.1.089.
  4. Anirudh, B, Ben Zineb, T., Polit, O., Ganapathi, M. and Prateek, G. (2020), "Nonlinear bending of porous curved beams reinforced by functionally graded nanocomposite graphene platelets applying an efficient shear flexible finite element approach", Int. J. Nonlin. Mech., 119, 103346. https://doi.org/10.1016/j.ijnonlinmec.2019.103346.
  5. Arefi, M., Bidgoli, E.M.R., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2018), "Application of sinusoidal shear deformation theory and physical neutral surface to analysis of functionally graded piezoelectric plate", Compos. Part B.-Eng., 151, 35-50. http://doi.org/10.1016/j.compositesb.2018.05.050.
  6. Attia, M.A. and Mohamed, S.A. (2020a), "Thermal vibration characteristics of pre/post-buckled bi-directional functionally graded tapered microbeams based on modified couple stress Reddy beam theory", Eng. Comput., https://doi.org/10.1007/s00366-020-01188-4.
  7. Attia, M.A. and Mohamed, S.A. (2020b), "Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory", Eng. Comput., https://doi.org/10.1007/s00366-020-01080-1.
  8. Babaei, H. and Eslami, M.R.(2021), "Nonlinear analysis of thermal-mechanical coupling bending of FGP infinite length cylindrical panels based on PNS and NSGT", Appl. Math. Model., 91, 1061-1080. https://doi.org/10.1016/j.apm.2020.10.004.
  9. Babaei, H., Kiani, Y. and Eslami, M.R. (2019), "Large amplitude free vibrations of long FGM cylindrical panels on nonlinear elastic foundation based on physical neutral surface", Compos. Struct., 220, 888-898. https://doi.org/10.1016/j.compstruct.2019.03.064.
  10. Barretta, R. Ali Faghidian, S. and Marotti de Sciarra, F., Penna, R., and Pinnola F.P. (2020), "On torsion of nonlocal Lam strain gradient FG elastic beams", Compos. Struct., 233, 111550. https://doi.org/10.1016/j.compstruct.2019.111550.
  11. Chen, X., Zhao, J.L., She, G.L., Jing, Y., Luo, J. and Pu, H.Y. (2022), "On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment", Eur. Phys. J. Plus, 137(10), 1158. https://doi.org/10.1140/epjp/s13360-022-03234-0.
  12. Dehrouyeh-Semnani, A.M., Dehdashti, E., Yazdi, M. and Nikkhah-Bahrami, M. (2019), "Nonlinear thermo-resonant behavior of fluid-conveying FG pipes", Int. J. Eng. Sci., 144, 103141. http://dx.doi.org/10.1016/j.ijengsci.2019.103141.
  13. Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. https://doi.org/10.12989/sem.2021.80.1.063.
  14. Ding, H.X., She, G.L. and Zhang, Y.W. (2022), "Nonlinear buckling and resonances of functionally graded fluid-conveying pipes with initial geometric imperfection", Eur. Phys. J. Plus, 137:1329. https://doi.org/10.1140/epjp/s13360-022-03570-1.
  15. Eltaher, M.A., Fouda, N., El-Midany, T. and Sadoun, A.M.(2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(3), 141. https://doi.org/10.1007/s40430-018-1065-0.
  16. Faghidian, S.A. (2016), "Unified formulation of the stress field of saint-Venant's flexure problem for symmetric cross-sections", Int. J. Mech. Sci., 111-112, 65-72. https://doi.org/10.1016/j.ijmecsci.2016.04.003.
  17. Faghidian, S.A. (2017), "Unified formulations of the shear coefficients in timoshenko beam theory", J. Eng. Mech., 143(9), 06017013. http://doi.org/10.1061/(ASCE)EM.1943-7889.0001297.
  18. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
  19. Ghayesh, M.H. (2018a), "Nonlinear vibrations of axially functionally graded timoshenko tapered beams", J. Comput. Nonlinear. Dynam, 13(4), 041002. https://doi.org/10.1115/1.4039191.
  20. Ghayesh, M.H. (2018b), "Mechanics of tapered AFG shear-deformable microbeams", Microsyst. Technol., 24, 1743-1754. https://doi.org/10.1007/s00542-018-3764-y.
  21. Ghayesh, M.H. (2019), "Nonlinear oscillations of FG cantilevers", Appl. Acoust, 145, 393-398. https://doi.org/10.1016/j.apacoust.2018.08.014.
  22. Heydari, A. (2018), "Exact vibration and buckling analyses ofarbitrary gradation of nano-higher order rectangular beam", Steel Compos. Struct., 28(5), 589-606. https://doi.org/10.12989/scs.2018.28.5.589.
  23. Jalaei, M.H. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.
  24. Kumar, S., Ranjan, V. and Jana, P. (2018), "Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method", Compos. Struct., 197, 39-53. http://doi.org/10.1016/j.compstruct.2018.04.085.
  25. Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
  26. Malikan, M., Krasheninnikov, M. and Eremeyev, V.A. (2020), "Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field", Int. J. Eng. Sci., 148, 103234. https://doi.org/10.1016/j.ijengsci.2019.103210.
  27. Nguyen, V.L., Tran, M.T., Nguyen, V.L. and Le, Q.H. (2021), "Static behaviour of functionally graded plates resting on elastic foundations using neutral surface concept", Archive of mechanical engineering, 68(1), 5-22.https://doi.org/10.24425/ame.2020.131706
  28. Radic, N. (2018), "On buckling of porous double-layered FG nanoplates in the Pasternak elastic foundation based on nonlocal strain gradient elasticity", Compos. Part B.-Eng., 153, 465-479. https://doi.org/10.1016/j.compositesb.2018.09.014.
  29. Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stresses, 21(6), 593-626. https://doi.org/10.1080/01495739808956165.
  30. She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stresses, 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
  31. She, G.L., Ding, H.X. and Zhang, Y.W. (2022), "Wave propagation in a FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232. https://doi.org/10.12989/sem.2022.82.2.225.
  32. She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphenenanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
  33. She, G.L., Yuan, F.G. and Ren, Y.R. (2017), "Thermal buckling and postbuckling analysis of piezoelectric FGM beams based on high-order shear deformation theory", J. Therm. Stresses, 40(6), 783-797. https://doi.org/10.1080/01495739.2016.1261009.
  34. Sun, D. and Luo, S.N. (2012), "Wave propagation and transient response of a functionally graded material plate under a point impact load in thermal environments", Appl. Math. Model., 36(1), 444-462. https://doi.org/10.1016/j.apm.2011.07.023.
  35. Xu, J.Q. and She, G.L. (2022), "Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection", Geomech. Eng., 31(3), 329-337. https://doi.org/10.12989/gae.2022.31.3.329.
  36. Zenkour, A.M. (2018), "A quasi-3D refined theory for functionallygraded single-layered and sandwich plates with porosities", Compos. Struct., 201, 38-48. https://doi.org/10.1016/j.compstruct.2018.05.147.
  37. Zenkour, A.M. and Radwan, A.F. (2019), "Bending response of FG plates resting on elastic foundations in hygrothermalenvironment with porosities", Compos. Struct.,213, 133-143.https://doi.org/10.1016/j.compstruct.2019.01.065
  38. Zhang, D.G. and Zhou, H.M. (2015), "Nonlinear bending analysis of FGM circular plates based on physical neutral surface and higher-order shear deformation theory", Aerosp. Sci. Technol., 41, 90-98.https://doi.org/10.1016/j.ast.2014.12.016.
  39. Zhang, Y.W. and She, G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel Compos. Struct., 42(3), 397-405. https://doi.org/10.12989/scs.2022.42.3.397.
  40. Zhang, Y.W., Ding, H.X. and She, G.L. (2022), "Snap-buckling and resonance of functionally graded graphene reinforced composites curved beams resting on elastic foundations in thermal environment", J. Therm. Stresses, 45(12), 1029-1042. https://doi.org/10.1080/01495739.2022.2125137.
  41. Zhang, Y.Y., Wang, X.Y., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.
  42. Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Luo, J. (2022), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel Compos. Struct. 43(6), 797-808. http://dx.doi.org/10.12989/scs.2022.43.6.797.
  43. Zouatnia, N., Hadji, L. and Kassoul, A. (2017), "A refined hyperbolic shear deformation theory for bending of functionally graded beams based on neutral surface position", Struct. Eng. Sci., 63(5), 683-689. http://doi.org/10.12989/sem.2017.63.5.683.