DOI QR코드

DOI QR Code

Investigation of the ASTM International frost heave testing method using a temperature-controllable cell

  • Hyunwoo, Jin (Department of Future and Smart Construction Research, KICT) ;
  • Jangguen, Lee (Department of Future and Smart Construction Research, KICT) ;
  • Byung-Hyun, Ryu (Department of Future and Smart Construction Research, KICT)
  • Received : 2022.09.19
  • Accepted : 2022.12.12
  • Published : 2022.12.25

Abstract

Frost heave can cause uneven ground uplift that may damage geo-infrastructure. To assist damage-prevention strategies, standard frost heave testing methods and frost susceptibility criteria have been established and used in various countries. ASTM International standard testing method is potentially the most useful standard, as abundant experimental data have been acquired through its use. ASTM International provides detailed recommendations, but the method is expensive and laborious because of the complex testing procedure requiring a freezing chamber. A simple frost heave testing method using a temperature-controllable cell has been proposed to overcome these difficulties, but it has not yet been established whether a temperature-controllable cell can adequately replace the ASTM International recommended apparatus. This paper reviews the applicability of the ASTM International testing method using the temperature-controllable cell. Freezing tests are compared using various soil mixtures with and without delivering blow to depress the freezing point (as recommended by ASTM International), and it is established that delivering blow does not affect heave rate, which is the key parameter in successful characterization of frost susceptibility. As the freezing temperature decreases, the duration of supercooling of pore water shortens or is eliminated; i.e., thermal shock with a sufficiently low freezing temperature can minimize or possibly eliminate supercooling.

Keywords

Acknowledgement

Research for this paper was carried out under the KICT Research Program (project no. 20220124, Development of Environmental Simulator and Advanced Construction Technologies over TRL6 in Extreme Conditions) funded by the Ministry of Science and ICT.

References

  1. ASTM International D2487 (2017a), Standard practice for classification of soils for engineering purposes (Unified Soil Classification System), ASTM International; West Conshohocken, PA, USA.
  2. ASTM International D5918 (2013), Standard test methods for frost heave and thaw weakening susceptibility of soils, ASTM International; West Conshohocken, PA, USA.
  3. ASTM International DD6913/D6913M (2017b), Standard test methods for particle-size distribution (gradation) of soils using sieve analysis, ASTM International; West Conshohocken, PA, USA.
  4. Bilodeau, J.P., Dore, G. and Pierre, P. (2008), "Gradation influence on frost susceptibility of base granular materials", Int. J. Pavement Eng., 9(6) 397-411. https://doi.org/10.1080/10298430802279819.
  5. Gholaminejad, A. and Hosseini, R. (2013), "A study of water supercooling", J. Elect. Cooling Therm. Contrl., 3(1), 1-6. https://doi.org/10.4236/jectc.2013.31001.
  6. Hendry, M.T., Onwude, L.U. and Sego, D.C. (2016), "A laboratory investigation of the frost heave susceptibility of fine-grained soil generated from the abrasion of a diorite aggregate", Cold Reg. Sci. Technol., 123, 91-98. https://doi.org/10.1016/j.coldregions.2015.11.016.
  7. JGS 0172 (2009), Test method for frost susceptibility of soils, Japan Geotechnical Society; Tokyo, Japan.
  8. Jin, H, Ryu, B.H. and Lee, J. (2022), "Assessment of the effect of fines content on frost susceptibility via simple frost heave testing and SP determination", Geomech. Eng., 30(4), 393-399. https://doi.org/10.12989/gae.2022.30.4.393.
  9. Jin, H., Go, G.H., Ryu, B.H. and Lee, J. (2021c), "Experimental and numerical investigation of closure time during artificial ground freezing with vertical flow", Geomech. Eng., 27(5), 433-445. https://doi.org/10.12989/gae.2021.27.5.433
  10. Jin, H., Kim, I., Eun, J., Ryu, B.H. and Lee, J. (2021b), "Assessment of the correlation between segregation potential and hydraulic conductivity with fines fraction", J. Korean Geotech. Soc., 37(12), 47-56. https://doi.org/10.7843/kgs.2021.37.12.47.
  11. Jin, H., Lee, J., Ryu, B.H. and Akagawa, S. (2019a), "Simple frost heave testing method using a temperature-controllable cell", Cold Reg. Sci. Technol., 157, 119-132. https://doi.org/10.1016/j.coldregions.2018.09.011.
  12. Jin, H., Lee, J., Ryu, B.H., Shin, Y. and Jang, Y.E. (2019c), "Experimental assessment of the effect of frozen fringe thickness on frost heave", Geomech. Eng., 19(2), 193-199. https://doi.org/10.12989/gae.2019.19.2.193.
  13. Jin, H., Lee, J., Zhuang, L. and Ryu, B.H. (2020), "Laboratory investigation of unconfined compression behavior of ice and frozen soil mixtures", Geomech. Eng., 22(3), 219-226. https://doi.org/10.12989/gae.2020.22.3.219.
  14. Jin, H., Ryu, B.H. and Lee, J. (2017), "Evaluation on the reliability of frost susceptibility criteria", J. Korean Geoenvrion. Soc., 18(12), 37-45. https://doi.org/10.14481/jkges.2017.18.12.37.
  15. Jin, H., Ryu, B.H. and Lee, J. (2019b), "Experimental assessment and specimen height effect in frost heave testing apparatus", J. Korean Geoenvrion. Soc., 20(1), 67-74. https://doi.org/10.14481/jkges.2019.20.1.67.
  16. Jin, H., Ryu, B.H., Kang, J. and Lee, J. (2021a), "Engineering approach to determination of the segregation potential by the upward-step-freezing testing method", Cold Reg. Sci. Technol., 191, 103361-1-15.https://doi.org/10.1016/j.coldregions.2021.103361.
  17. Jones, R.H. (1980), "Frost heave of roads", Q. J. Eng. Geol., 13(2), 77-86. https://doi.org/10.1144/GSL.QJEG.1980.013.02.02.
  18. Konrad, J.M. (1987), "Procedure for determining the segregation potential of freezing soils", Geotech. Geotech. Test. J., 10(2), 51-58. https://doi.org/10.1520/GTJ10933J.
  19. Konrad, J.M. (1988a), "Influence of freezing mode on frost heave characteristics", Cold Reg. Sci. Technol., 15, 161-175. https://doi.org/10.1016/0165-232X(88)90062-6.
  20. Konrad, J.M. (1989), "Effect of freeze-thaw cycles on the freezing characteristics of a clayey silt at various overconsolidation ratios", Can. Geotech. J., 26, 217-226. https://doi.org/10.1139/t89-031.
  21. Konrad, J.M. (1989b), "Influence of overconsolidation on the freezing characteristics of a clayey silt", Can. Geotech. J., 26, 9-21. https://doi.org/10.1139/t89-002.
  22. Konrad, J.M. (1994), "Sixteenth Canadian geotechincal colloquium: Frost heave in soils: Concepts and engineering", Can. Geotech. J., 31, 223-245. https://doi.org/10.1139/t94-028.
  23. Konrad, J.M. and Morgenstern, N.R. (1980), "A mechanism theory of ice lens formation in fine-grained soils", Can. Geotech. J., 18, 482-491. https://doi.org/10.1139/t80-056.
  24. Konrad, J.M. and Morgenstern, N.R. (1981), "The segregation potential of a freezing soil", Can. Geotech. J., 18, 482-491. https://doi.org/10.1139/t81-059.
  25. Konrad, J.M. and Morgenstern, N.R. (1982), "Effects of applied pressure on freezing soils", Can. Geotech. J., 19, 494-505. https://doi.org/10.1139/t82-053.
  26. Penner, E. (1986), "Aspects of ice lens growth in soils", Cold Reg. Sci. Technol., 13, 91-100. https://doi.org/10.1016/0165-232X(86)90011-X
  27. Seto, J.T.C. and Konrad, J.M. (1994), "Pore pressure measurements during freezing of an overconsolidated clayey silt", Cold Reg. Sci. Technol., 22, 319-338. https://doi.org/10.1016/0165-232X(94)90018-3.
  28. Sheng, D., Zhang, S., Yu, Z. and Zhang, J. (2013), "Assessing frost susceptibility of soils using PCHeave", Cold Reg. Sci. Technol., 95, 27-38. https://doi.org/10.1016/j.coldregions.2013.08.003.
  29. Svec, O.J. (1989), "A new concept of frost-heave characteristics of soils", Cold Reg. Sci. Technol., 16, 271-279. https://doi.org/10.1016/0165-232X(90)90011-K.
  30. Zheng, H. Kanie, S., Niu, F., Akagawa, S. and Li, A. (2016). "Application of practical one-dimensional frost heave estimation method in two-dimensional situation", Soils Found., 56(5), 904-914. https://doi.org/10.1016/j.sandf.2016.08.014.