DOI QR코드

DOI QR Code

Indirect evaluation of the shear wave velocity of clays via piezocone penetration tests

  • Vinod K., Singh (Soft Clay Engineering Laboratory, Industry-Academy Cooperation, Dong-A University) ;
  • Sung-Gyo, Chung (Department of Civil Engineering, Dong-A University) ;
  • Hyeog-Jun, Kweon (Soft Clay Engineering Laboratory, Industry-Academy Cooperation, Dong-A University)
  • 투고 : 2021.12.01
  • 심사 : 2022.12.15
  • 발행 : 2022.12.25

초록

This paper presents the re-evaluation of existing piezocone penetration test (CPTu)-based shear wave velocity (Vs) equations through their application into well-documented data obtained at nine sites in six countries. The re-evaluation indicates that the existing equations are appropriate to use for any specific soil, but not for various types of clays. Existing equations were adjusted to suit all nine clays and show that the correlations between the measured and predicted Vs values tend to improve with an increasing number of parameters in the equations. An adjusted equation, which comprises a CPTu parameter and two soil properties (i.e., effective overburden stress and void ratio) with the best correlation, can be converted into a CPTu-based equation that has two CPTu parameters and depth by considering the effect of soil cementation. Then, the developed equation was verified by application to each of the nine soils and nine other worldwide clays, in which the predicted Vs values are comparable with the measured and the stochastically simulated values. Accordingly, the newly developed CPTu-based equation, which is a time-saving and economical method and can estimate Vs indirectly for any type of naturally deposited clay, is recommended for practical applications.

키워드

과제정보

This work was supported by the Korea Science and Engineering Foundation (KOSEF) Research Program grant funded by the Korean government (MEST) (NRF-2020R1I1A3074225) and by the assistance of the graduate students at Dong-A University, Busan, Korea.

참고문헌

  1. Andrus, R.D., Nisha, P.M., Piratheepan, P., Ellis, B.S. and Holzer, T.L. (2007), "Predicting shear-wave velocity from cone penetration resistance", Proceedings of the 4th International Conference on Earthquake Geotechnical Engineering, Thessaloniki, Greece, Paper no. 1454.
  2. Burland, J.B. (1990), "On the compressibility and shear strength of natural clays", Geotechnique, 40(3), 329-378. https://doi.org/10.1680/geot.1990.40.3.329.
  3. Cai, G., Puppala, A.J., and Liu, S. (2014), "Characterization on the correlation between shear wave velocity and piezocone tip resistance of Jiangsu clays", Eng. Geol., 171, 96-103. https://doi.org/10.1016/j.enggeo.2013.12.012.
  4. Campanella, R.G., Robertson, P.K. and Gillespie, D. (1983), "Cone penetration testing in deltaic soils", Can. Geotech. J., 20(1), 23-35. https://doi.org/10.1139/t83-003.
  5. Campanella, R.G., Robertson, P.K. and Gillespie, D. (1986), "A seismic cone penetrometer for offshore applications", Proc. of the Oceanology Int.'86, UK: Advances in Underwater Technology, Ocean Science and Offshore Engineering, 6, 479-486.
  6. Chai, J.C., Hino, T. and Shen, S.I. (2017), "Characteristics of clay deposits in Saga Plain, Japan", Proceedings of the Institution of Civil Engineers, 170(6), 548-558. https://doi.org/10.1680/jgeen.16.00197.
  7. Chang, T.S. (1986), "Dynamic behavior of cemented sand", Ph.D. Dissertation, University of Michigan, Michigan.
  8. Cho, H.I., Kim, H.S., Sun, C.G. and Kim, D.S. (2020), "Settlement prediction for footings based on stress history from VS measurements", Geomech. Eng., 20(5), 371-384. https://doi.org/10.12989/gae.2020.20.5.371.
  9. Cho, H.I., Kim, N.R., Park, H.J. and Kim, D.S. (2017), "Settlement prediction of footings using VS", Appl. Sci., 7(11), 1105. https://doi.org/10.3390/app7111105.
  10. Cho, H.I., Sun, C.G., Kim, J.H. and Kim, D.S. (2018), "OCR evaluation of cohesionless soil in centrifuge model using shear wave velocity", Geomech. Eng., 15(4), 987-995. https://doi.org/10.12989/gae.2018.15.4.987.
  11. Chung, S.G. and Kweon, H.J. (2013), "Oil-operated fixed-piston sampler and its applicability". J. Geotech. Geoenviron. Eng. ASCE, 139(1), 134-142. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000730.
  12. Chung, S.G., Lee, J.M. and Jang, W.Y. (2014), "Comparing the quality of samples obtained by three types of fixed-piston samplers for soft sensitive clay", Eng. Geol., 179, 50-58. https://doi.org/10.1016/j.enggeo.2014.06.017.
  13. Chung, S.G., Lee, J.M., Kweon, H.J. and Singh, V.K. (2017), "Penetration behavior and sample quality of hydraulically activated fixed-piston samplers", J. Geotech. Geoenviron. Eng. ASCE, 143(3), 1-12. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001609.
  14. Dobry, R. and Gazetas, G. (1986), "Dynamic response of arbitrarily shaped foundations", J. Geotech. Eng., 112(2), 136-154. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:2(109).
  15. Donohue, S. and Long, M. (2010), "Assessment of sample quality in soft clay using shear wave velocity and suction measurements", Geotechnique, 60(11), 883-889. https://doi.org/10.1680/geot.8.T.007.3741.
  16. Duan, W., Cai, G., Liua, S., Puppala, A.J. and Chen, R. (2019), "In-situ evaluation of undrained shear strength from seismic piezocone penetration tests for soft marine clay in Jiangsu", China. Transportation Geotechnics 20, 100253, 1-10. https://doi.org/10.1016/j.trgeo.2019.100253.
  17. Foundation Engineering Manual (1985), Second edition, The Canadian Geotechnical Society. 456p.
  18. Hardin, B.O. and Black, W. (1968), "Vibration modulus of normally consolidated clay", J. Soil Mech. Found. Div., 94(2), 353-369. https://doi.org/10.1061/JSFEAQ.0001100.
  19. Hardin, B.O. and Black, W. (1969), "Closure to: Vibration modulus of normally consolidated clay", J. Soil Mech. Found. Div., 95(6), 1531-1537. https://doi.org/10.1061/JSFEAQ.0001364.
  20. Hawkins, A.B., Larnach, W.J., Lloyd, I.M. and Nash, D.F.T. (1989), "Selecting the location, and the initial investigation of the SERC soft clay test bed site", Q. J. Eng. Geol. Hydrolog., 22, 281-316. http://dx.doi.org/10.1144/GSL.QJEG.1989.022.04.04.
  21. Hegazy, Y.A. and Mayne, P.W. (1995), "Statistical correlations between Vs and cone penetration data for different soil types", Proc. Int. Sym. on Cone Penetration Testing (CPT '95), 173-178.
  22. Hegazy, Y.A. and Mayne, P.W. (2006), "A global statistical correlation between shear wave velocity and cone penetration data", Proc. Geo-Shanghai 2006, ASCE GSP 149, 243-248. https://doi.org/10.1061/40861(193)31.
  23. Hight, D.W., Paul, M.A., Barras, B.F., Powell, J.J.M., Nash, D.F.T., Smith, P.R., Jardine, R.J. and Edwards, D.H. (2003), "The characterisation of the Bothkennar clay", Proc., Characterisation and Engineering Properies of Natural Soils, Vol. 1, (Eds., Tan et al.), A.A. Balkema.
  24. Jamiolkowski, M., Lancellotta, R. and Lo Presti, D.C.F. (1994), "Remarks on the stiffness at small strains of six Italian clays", Proceedings of the 1st Int. Conf., Pre-failure Deformation of Geomaterials, Vol. 2, IS-Hokkaido.
  25. Jannuzzi, G.M.F., Danziger, F.A.B. and Martins, I.S.M. (2015), "Geological-geotechnical characterisation of Sarapui II clay", Eng. Geol., 190, 77-86. https://doi.org/10.1016/j.enggeo.2015.03.001.
  26. JGS 1221-1995 (1998), Method for obtaining undisturbed soil samples using thin-walled tube sampler with fixed piston. Japanese Geotechnical Society, Tokyo, Japan.
  27. Kawaguchi, T. and Tanaka, H. (2008), "Formulation of Gmax from reconstituted clayey soil and its application to Gmax measured in the field", Soils Found., 48(6), 521-831. https://doi.org/10.3208/sandf.48.821.
  28. KDS 417-00 (2019), Standards for Earthquake Resistant Design of Architectural Structures, Ministry of Land, Infrastructure and Transport, Rep. of Korea.
  29. Kim, H.J., Sun, C.G., Cho, S.M. and Heo, Y. (2005), "Determination of Shear Wave Velocity Profiles from the SCPT", KSCE J. Civil Eng., 25(3), 201-214.
  30. Kulkarni, M.P., Patel, A. and Singh, D.N. (2010), "Application of shear wave velocity for characterizing clays from coastal regions", KSCE J. Civil Eng., 14(3), 307-321. https://doi.org/10.1007/s12205-010-0307-1.
  31. L'Heureux, J.S. and Long, M. (2017), "Relationship between shear-wave velocity and geotechnical parameters for Norwegian Clays", J. Geotech. Geoenviron. Eng. ASCE, 143(6), 04017013-1-04017013-20. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001645
  32. L'Heureux, J.S., Long, M., Vanneste, M., Sauvin, G., Hansen, L., Polom, U., Lecomte, I., Dehls, J. and Janbu, N. (2013), "On the prediction of settlement from high-resolution shear-wave reflection seismic data: The Trondheim harbour case study, mid Norway", Eng. Geol., 167, 72-83. https://doi.org/10.1016/j.enggeo.2013.10.006.
  33. Lo Presti, D.C.F., Pallara, O., Lancellotta, R., Armandi, M. and Maniscalco, R. (1993), "Monotonic and cyclic loading behavior of two sands at small strains", Geotech. Test. J., 16(4), 409-424. https://doi.org/10.1520/GTJ10281J.
  34. Long, M. and Donohuea, S. (2010), "Characterization of Norwegian marine clays with combined shear wave velocity and piezocone cone penetration test (CPTU) data", Can. Geotech. J., 47(7), 709-718. https://doi.org/10.1139/T09-133.
  35. Lunne, T., Robertson, P.K. and Powell, J.J.M. (1997), Cone Penetration Testing in Geotechnical Practice, Blackie Academic, New York, 312.
  36. Martin, G.K. and Mayne, P.W. (1997), "Seismic flat dilatometer test in Connecticut Valley varved clay", Geotech. Test. J., ASTM, 20 (3), 357-361. https://doi.org/10.1520/GTJ19970011.
  37. Mayne, P.W. and Burns, S.E. (1995), "Geotechnical report of Seismic cone test at Bagdad, AZ, to Agra Earth and Environmental Inc.", Georgia Tech.
  38. Mayne, P.W., Coop, M.R., Springman, S.M., Huang, A.B. and Zornberg, J.G. (2009), "Geomaterial behavior and testing", Proc., 17th ICSMGE SOA-1, Alexandria, 4, 2777-2872. https://doi.org/10.3233/978-1-60750-031-5-2777.
  39. Mayne, P.W. and Rix, G.J. (1993), "Gmax-qc relationships for clays", Geotech. Test. J., 16(1), 54-60. https://doi.org/10.1520/GTJ10267J.
  40. Mayne, P.W. and Rix, G.J. (1995), "Correlations between shear wave velocity and cone tip resistance in natural clays", Soils Found., 35(2), 107-110. https://doi.org/10.3208/sandf1972.35.2_107.
  41. Nagaraj, T.S. and Murthy, B.R. (1986), "A critical reappraisal of compression index equations", Geotechnique, 36(1), 27-32. https://doi.org/10.1680/geot.1986.36.1.27.
  42. Nishida, K., Tanaka, H. and Mitachi, T. (2006), "Influence of sample quality on shear wave velocity and residual effective stress", Proceedings of the 16th Int. Offshore and Polar Engineering Conference.
  43. Rao, K.G. (2004), "Comprehensive experimental investigation for geotechnical characteristics of Pusan clay in the west coast of the Nakdong River estuary", Ph.D. Dissertation, Dong-A University, Busan.
  44. Robertson, P.K. (2009), "Interpretation of cone penetration tests - a unified approach", Can. Geotech. J., 46(11), 1337-1355. https://doi.org/10.1139/T09-065.
  45. Safdar, M., Newson, T., Schmidt, C., Sato, K., Fujikawa, T. and Shah, F. (2021), "Shear wave velocity of fiber reinforced cemented Toyoura silty sand", Geomech. Eng., 25(3), 207-219. https://doi.org/10.12989/gae.2021.25.3.207.
  46. Schnaid, F. (2009), In Situ Testing in Geomechanics: The Main Tests, Taylor and Francis, London, UK. https://doi.org/10.1201/9781482266054.
  47. Shibuya, S. and Tamrakar, S.B. (2003), "Engineering properties of Bangkok clay", Proc., Characterisation and Engineering Properies of Natural Soils, 1, (Eds., Tan et al.), A.A. Balkema.
  48. Shibuya, S. and Tanaka, H. (1996), "Estimate of elastic shear modulus in Holocene soil deposits", Soils Found., 36(4), 45-55. https://doi.org/10.3208/sandf.36.4_45.
  49. Simonini, P. and Cola, S. (2000), "Use of the piezocone to predict the maximum stiffness of Venetian soils", J. Geotech. Geoenviron. Eng., 126(4), 378-382. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(378).
  50. Singh, V.K. (2012), "Evaluation of deformation modulus and shear strength of deep sand in the Nakdong River delta", Ph.D. Dissertation, Dong-A University, Busan.
  51. Singh, V.K. and Chung, S.G. (2013), "Determination of deformation modulus for lower sands in Nakdong River Delta", Mar. Georesour. Geotech., 31(4), 290-307. https://doi.org/10.1080/1064119X.2012.743635.
  52. Singh, V.K. and Chung, S.G. (2015), "Evaluation of overconsolidation ratios from laboratory and in situ tests on Busan clay", Eng. Geol., 199, 38-47. https://doi.org/10.1016/j.enggeo.2015.10.006.
  53. Soccodato, F.M. (2003), "Geotechnical properties of Fucino clayey soil", Proc., Characterisation and Engineering Properies of Natural Soils, 1, (Eds., Tan et al.), A.A. Balkema.
  54. Stokoe, K.H., Anderson, D.G., Hoar, R.J. and Isenhower, W.M. (1978), "In-situ and laboratory shear velocity and modulus", Proceedings of the Earthquake Engineering and Soil Dynamics, 3, ASCE, New York.
  55. Tanaka, H. (2007), "Geotechnical properties of Hachirogata Clay", Proceedings of the Characterisation and Engineering Properties of Natural Soils, Singapore.
  56. Tanaka, H., Hirabayashi, H., Matsuoka, T. and Kaneko, H. (2012), "Use of fall cone test as measurement of shear strength for soft clay materials", Soils Found., 52(4), 590-599. https://doi.org/10.1016/j.sandf.2012.07.002.
  57. Tanaka, H., Locat, J., Shibuya, S., Soon, T.T. and Shiwakoti, D.R. (2001), "Characterization of Singapore, Bangkok, and Ariake clays", Can. Geotech. J., 38, 378-400. https://doi.org/10.1139/t00-106.
  58. Tatsuoka, F. and Shibuya, S. (1992), "Deformation characteristics of soils and rocks from field and laboratory tests", Report of the Institute of Industrial Science, Serial No. 235, 37(1), The University of Tokyo.
  59. Tonni, L. and Simonini, P. (2013), "Shear wave velocity as function of cone penetration test measurements in sand and silt mixtures", Eng. Geol., 163, 55-67. https://doi.org/10.1016/j.enggeo.2013.06.005.
  60. Wang, H., Wu, S., Qi, X. and Chu, J. (2021), "Site characterization of reclaimed lands based on seismic cone penetration test", Eng. Geol., 280, 105953, 1-11. https://doi.org/10.1016/j.enggeo.2020.105953.
  61. Yoon, H.K., Lee, C., Kim, H.K. and Lee, J.S. (2011), "Evaluation of preconsolidation stress by shear wave velocity", Smart Struct. Syst., 7(4), 275-287. https://doi.org/10.12989/sss.2011.7.4.275.