과제정보
This work was supported by the Korea Science and Engineering Foundation (KOSEF) Research Program grant funded by the Korean government (MEST) (NRF-2020R1I1A3074225) and by the assistance of the graduate students at Dong-A University, Busan, Korea.
참고문헌
- Andrus, R.D., Nisha, P.M., Piratheepan, P., Ellis, B.S. and Holzer, T.L. (2007), "Predicting shear-wave velocity from cone penetration resistance", Proceedings of the 4th International Conference on Earthquake Geotechnical Engineering, Thessaloniki, Greece, Paper no. 1454.
- Burland, J.B. (1990), "On the compressibility and shear strength of natural clays", Geotechnique, 40(3), 329-378. https://doi.org/10.1680/geot.1990.40.3.329.
- Cai, G., Puppala, A.J., and Liu, S. (2014), "Characterization on the correlation between shear wave velocity and piezocone tip resistance of Jiangsu clays", Eng. Geol., 171, 96-103. https://doi.org/10.1016/j.enggeo.2013.12.012.
- Campanella, R.G., Robertson, P.K. and Gillespie, D. (1983), "Cone penetration testing in deltaic soils", Can. Geotech. J., 20(1), 23-35. https://doi.org/10.1139/t83-003.
- Campanella, R.G., Robertson, P.K. and Gillespie, D. (1986), "A seismic cone penetrometer for offshore applications", Proc. of the Oceanology Int.'86, UK: Advances in Underwater Technology, Ocean Science and Offshore Engineering, 6, 479-486.
- Chai, J.C., Hino, T. and Shen, S.I. (2017), "Characteristics of clay deposits in Saga Plain, Japan", Proceedings of the Institution of Civil Engineers, 170(6), 548-558. https://doi.org/10.1680/jgeen.16.00197.
- Chang, T.S. (1986), "Dynamic behavior of cemented sand", Ph.D. Dissertation, University of Michigan, Michigan.
- Cho, H.I., Kim, H.S., Sun, C.G. and Kim, D.S. (2020), "Settlement prediction for footings based on stress history from VS measurements", Geomech. Eng., 20(5), 371-384. https://doi.org/10.12989/gae.2020.20.5.371.
- Cho, H.I., Kim, N.R., Park, H.J. and Kim, D.S. (2017), "Settlement prediction of footings using VS", Appl. Sci., 7(11), 1105. https://doi.org/10.3390/app7111105.
- Cho, H.I., Sun, C.G., Kim, J.H. and Kim, D.S. (2018), "OCR evaluation of cohesionless soil in centrifuge model using shear wave velocity", Geomech. Eng., 15(4), 987-995. https://doi.org/10.12989/gae.2018.15.4.987.
- Chung, S.G. and Kweon, H.J. (2013), "Oil-operated fixed-piston sampler and its applicability". J. Geotech. Geoenviron. Eng. ASCE, 139(1), 134-142. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000730.
- Chung, S.G., Lee, J.M. and Jang, W.Y. (2014), "Comparing the quality of samples obtained by three types of fixed-piston samplers for soft sensitive clay", Eng. Geol., 179, 50-58. https://doi.org/10.1016/j.enggeo.2014.06.017.
- Chung, S.G., Lee, J.M., Kweon, H.J. and Singh, V.K. (2017), "Penetration behavior and sample quality of hydraulically activated fixed-piston samplers", J. Geotech. Geoenviron. Eng. ASCE, 143(3), 1-12. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001609.
- Dobry, R. and Gazetas, G. (1986), "Dynamic response of arbitrarily shaped foundations", J. Geotech. Eng., 112(2), 136-154. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:2(109).
- Donohue, S. and Long, M. (2010), "Assessment of sample quality in soft clay using shear wave velocity and suction measurements", Geotechnique, 60(11), 883-889. https://doi.org/10.1680/geot.8.T.007.3741.
- Duan, W., Cai, G., Liua, S., Puppala, A.J. and Chen, R. (2019), "In-situ evaluation of undrained shear strength from seismic piezocone penetration tests for soft marine clay in Jiangsu", China. Transportation Geotechnics 20, 100253, 1-10. https://doi.org/10.1016/j.trgeo.2019.100253.
- Foundation Engineering Manual (1985), Second edition, The Canadian Geotechnical Society. 456p.
- Hardin, B.O. and Black, W. (1968), "Vibration modulus of normally consolidated clay", J. Soil Mech. Found. Div., 94(2), 353-369. https://doi.org/10.1061/JSFEAQ.0001100.
- Hardin, B.O. and Black, W. (1969), "Closure to: Vibration modulus of normally consolidated clay", J. Soil Mech. Found. Div., 95(6), 1531-1537. https://doi.org/10.1061/JSFEAQ.0001364.
- Hawkins, A.B., Larnach, W.J., Lloyd, I.M. and Nash, D.F.T. (1989), "Selecting the location, and the initial investigation of the SERC soft clay test bed site", Q. J. Eng. Geol. Hydrolog., 22, 281-316. http://dx.doi.org/10.1144/GSL.QJEG.1989.022.04.04.
- Hegazy, Y.A. and Mayne, P.W. (1995), "Statistical correlations between Vs and cone penetration data for different soil types", Proc. Int. Sym. on Cone Penetration Testing (CPT '95), 173-178.
- Hegazy, Y.A. and Mayne, P.W. (2006), "A global statistical correlation between shear wave velocity and cone penetration data", Proc. Geo-Shanghai 2006, ASCE GSP 149, 243-248. https://doi.org/10.1061/40861(193)31.
- Hight, D.W., Paul, M.A., Barras, B.F., Powell, J.J.M., Nash, D.F.T., Smith, P.R., Jardine, R.J. and Edwards, D.H. (2003), "The characterisation of the Bothkennar clay", Proc., Characterisation and Engineering Properies of Natural Soils, Vol. 1, (Eds., Tan et al.), A.A. Balkema.
- Jamiolkowski, M., Lancellotta, R. and Lo Presti, D.C.F. (1994), "Remarks on the stiffness at small strains of six Italian clays", Proceedings of the 1st Int. Conf., Pre-failure Deformation of Geomaterials, Vol. 2, IS-Hokkaido.
- Jannuzzi, G.M.F., Danziger, F.A.B. and Martins, I.S.M. (2015), "Geological-geotechnical characterisation of Sarapui II clay", Eng. Geol., 190, 77-86. https://doi.org/10.1016/j.enggeo.2015.03.001.
- JGS 1221-1995 (1998), Method for obtaining undisturbed soil samples using thin-walled tube sampler with fixed piston. Japanese Geotechnical Society, Tokyo, Japan.
- Kawaguchi, T. and Tanaka, H. (2008), "Formulation of Gmax from reconstituted clayey soil and its application to Gmax measured in the field", Soils Found., 48(6), 521-831. https://doi.org/10.3208/sandf.48.821.
- KDS 417-00 (2019), Standards for Earthquake Resistant Design of Architectural Structures, Ministry of Land, Infrastructure and Transport, Rep. of Korea.
- Kim, H.J., Sun, C.G., Cho, S.M. and Heo, Y. (2005), "Determination of Shear Wave Velocity Profiles from the SCPT", KSCE J. Civil Eng., 25(3), 201-214.
- Kulkarni, M.P., Patel, A. and Singh, D.N. (2010), "Application of shear wave velocity for characterizing clays from coastal regions", KSCE J. Civil Eng., 14(3), 307-321. https://doi.org/10.1007/s12205-010-0307-1.
- L'Heureux, J.S. and Long, M. (2017), "Relationship between shear-wave velocity and geotechnical parameters for Norwegian Clays", J. Geotech. Geoenviron. Eng. ASCE, 143(6), 04017013-1-04017013-20. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001645
- L'Heureux, J.S., Long, M., Vanneste, M., Sauvin, G., Hansen, L., Polom, U., Lecomte, I., Dehls, J. and Janbu, N. (2013), "On the prediction of settlement from high-resolution shear-wave reflection seismic data: The Trondheim harbour case study, mid Norway", Eng. Geol., 167, 72-83. https://doi.org/10.1016/j.enggeo.2013.10.006.
- Lo Presti, D.C.F., Pallara, O., Lancellotta, R., Armandi, M. and Maniscalco, R. (1993), "Monotonic and cyclic loading behavior of two sands at small strains", Geotech. Test. J., 16(4), 409-424. https://doi.org/10.1520/GTJ10281J.
- Long, M. and Donohuea, S. (2010), "Characterization of Norwegian marine clays with combined shear wave velocity and piezocone cone penetration test (CPTU) data", Can. Geotech. J., 47(7), 709-718. https://doi.org/10.1139/T09-133.
- Lunne, T., Robertson, P.K. and Powell, J.J.M. (1997), Cone Penetration Testing in Geotechnical Practice, Blackie Academic, New York, 312.
- Martin, G.K. and Mayne, P.W. (1997), "Seismic flat dilatometer test in Connecticut Valley varved clay", Geotech. Test. J., ASTM, 20 (3), 357-361. https://doi.org/10.1520/GTJ19970011.
- Mayne, P.W. and Burns, S.E. (1995), "Geotechnical report of Seismic cone test at Bagdad, AZ, to Agra Earth and Environmental Inc.", Georgia Tech.
- Mayne, P.W., Coop, M.R., Springman, S.M., Huang, A.B. and Zornberg, J.G. (2009), "Geomaterial behavior and testing", Proc., 17th ICSMGE SOA-1, Alexandria, 4, 2777-2872. https://doi.org/10.3233/978-1-60750-031-5-2777.
- Mayne, P.W. and Rix, G.J. (1993), "Gmax-qc relationships for clays", Geotech. Test. J., 16(1), 54-60. https://doi.org/10.1520/GTJ10267J.
- Mayne, P.W. and Rix, G.J. (1995), "Correlations between shear wave velocity and cone tip resistance in natural clays", Soils Found., 35(2), 107-110. https://doi.org/10.3208/sandf1972.35.2_107.
- Nagaraj, T.S. and Murthy, B.R. (1986), "A critical reappraisal of compression index equations", Geotechnique, 36(1), 27-32. https://doi.org/10.1680/geot.1986.36.1.27.
- Nishida, K., Tanaka, H. and Mitachi, T. (2006), "Influence of sample quality on shear wave velocity and residual effective stress", Proceedings of the 16th Int. Offshore and Polar Engineering Conference.
- Rao, K.G. (2004), "Comprehensive experimental investigation for geotechnical characteristics of Pusan clay in the west coast of the Nakdong River estuary", Ph.D. Dissertation, Dong-A University, Busan.
- Robertson, P.K. (2009), "Interpretation of cone penetration tests - a unified approach", Can. Geotech. J., 46(11), 1337-1355. https://doi.org/10.1139/T09-065.
- Safdar, M., Newson, T., Schmidt, C., Sato, K., Fujikawa, T. and Shah, F. (2021), "Shear wave velocity of fiber reinforced cemented Toyoura silty sand", Geomech. Eng., 25(3), 207-219. https://doi.org/10.12989/gae.2021.25.3.207.
- Schnaid, F. (2009), In Situ Testing in Geomechanics: The Main Tests, Taylor and Francis, London, UK. https://doi.org/10.1201/9781482266054.
- Shibuya, S. and Tamrakar, S.B. (2003), "Engineering properties of Bangkok clay", Proc., Characterisation and Engineering Properies of Natural Soils, 1, (Eds., Tan et al.), A.A. Balkema.
- Shibuya, S. and Tanaka, H. (1996), "Estimate of elastic shear modulus in Holocene soil deposits", Soils Found., 36(4), 45-55. https://doi.org/10.3208/sandf.36.4_45.
- Simonini, P. and Cola, S. (2000), "Use of the piezocone to predict the maximum stiffness of Venetian soils", J. Geotech. Geoenviron. Eng., 126(4), 378-382. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(378).
- Singh, V.K. (2012), "Evaluation of deformation modulus and shear strength of deep sand in the Nakdong River delta", Ph.D. Dissertation, Dong-A University, Busan.
- Singh, V.K. and Chung, S.G. (2013), "Determination of deformation modulus for lower sands in Nakdong River Delta", Mar. Georesour. Geotech., 31(4), 290-307. https://doi.org/10.1080/1064119X.2012.743635.
- Singh, V.K. and Chung, S.G. (2015), "Evaluation of overconsolidation ratios from laboratory and in situ tests on Busan clay", Eng. Geol., 199, 38-47. https://doi.org/10.1016/j.enggeo.2015.10.006.
- Soccodato, F.M. (2003), "Geotechnical properties of Fucino clayey soil", Proc., Characterisation and Engineering Properies of Natural Soils, 1, (Eds., Tan et al.), A.A. Balkema.
- Stokoe, K.H., Anderson, D.G., Hoar, R.J. and Isenhower, W.M. (1978), "In-situ and laboratory shear velocity and modulus", Proceedings of the Earthquake Engineering and Soil Dynamics, 3, ASCE, New York.
- Tanaka, H. (2007), "Geotechnical properties of Hachirogata Clay", Proceedings of the Characterisation and Engineering Properties of Natural Soils, Singapore.
- Tanaka, H., Hirabayashi, H., Matsuoka, T. and Kaneko, H. (2012), "Use of fall cone test as measurement of shear strength for soft clay materials", Soils Found., 52(4), 590-599. https://doi.org/10.1016/j.sandf.2012.07.002.
- Tanaka, H., Locat, J., Shibuya, S., Soon, T.T. and Shiwakoti, D.R. (2001), "Characterization of Singapore, Bangkok, and Ariake clays", Can. Geotech. J., 38, 378-400. https://doi.org/10.1139/t00-106.
- Tatsuoka, F. and Shibuya, S. (1992), "Deformation characteristics of soils and rocks from field and laboratory tests", Report of the Institute of Industrial Science, Serial No. 235, 37(1), The University of Tokyo.
- Tonni, L. and Simonini, P. (2013), "Shear wave velocity as function of cone penetration test measurements in sand and silt mixtures", Eng. Geol., 163, 55-67. https://doi.org/10.1016/j.enggeo.2013.06.005.
- Wang, H., Wu, S., Qi, X. and Chu, J. (2021), "Site characterization of reclaimed lands based on seismic cone penetration test", Eng. Geol., 280, 105953, 1-11. https://doi.org/10.1016/j.enggeo.2020.105953.
- Yoon, H.K., Lee, C., Kim, H.K. and Lee, J.S. (2011), "Evaluation of preconsolidation stress by shear wave velocity", Smart Struct. Syst., 7(4), 275-287. https://doi.org/10.12989/sss.2011.7.4.275.