DOI QR코드

DOI QR Code

Wave plate 습분제거기의 형상 변경을 통한 성능 개선

Performance improvement of wave plate mist eliminator through geometry modification

  • 노정훈 (고등기술연구원 지능기계시스템센터) ;
  • 조민철 (고등기술연구원 지능기계시스템센터) ;
  • 이승종 (고등기술연구원 플랜트공정개발센터)
  • Jung-Hun, Noh (Institute for Advanced Engineering, AI & Mechanical System Center) ;
  • Min-Cheol, Cho (Institute for Advanced Engineering, AI & Mechanical System Center) ;
  • Seung-Jong, Lee (Institute for Advanced Engineering, Plant Process Development Center)
  • 투고 : 2022.06.08
  • 심사 : 2022.08.24
  • 발행 : 2022.12.31

초록

The geometry of popular wave plate type mist eliminator for the wet flue gas desulfurization process was improved, fabricated, and experimentally evaluated. A Mist eliminator is a type of inertial particle collector which collection efficiency is proportional to the velocity of the gas phase. However, as the amount of re-entrainment is also proportional to the gas phase velocity, there is a limitation for the gas phase flow rate. Re-entrainment is one of the most important issues in a mist eliminator and is likely to occur as the input of the liquid phase and flow rate of the gas phase increase. In order to resolve this problem, the projection angle of the improved mist eliminator is set to 30° from the conventional one while maintaining the cross-section. With low flow rate conditions, the modified mist eliminator showed a similar pressure drop and overall collection efficiency. However, with conditions in which re-entrainment is obviously occurring, the modified mist eliminator showed better performance in draining droplets than the conventional one. As a result, the modified mist eliminator showed higher overall collection efficiency.

키워드

과제정보

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구과제입니다. (No.20181110200170)

참고문헌

  1. Al-Dughaither, A. S., Ibrahim, A. A., and Al-Masry, W. A. (2010). Investigating droplet separation efficiency in wire-mesh mist eliminators in bubble column, Journal of Saudi Chemical Society, 14(4), 331-339. https://doi.org/10.1016/j.jscs.2010.04.001
  2. Atia, S., and Lee, C. I. (2003). Optimization of the Length of the Mist-eliminator Blades for Small Size Water Powered Scrubber, Geosystem Engineering, 6(2), 27-32.
  3. Azzopardi, B. J., and Sanaullah, K. S. (2002). Re-entrainment in wave-plate mist eliminators, Chemical engineering science, 57(17), 3557-3563. https://doi.org/10.1016/S0009-2509(02)00270-1
  4. Brunazzi, E., and Paglianti, A. (1998). Design of wire mesh mist eliminators, AIChE journal, 44(3), 505-512. https://doi.org/10.1002/aic.690440302
  5. Burkholz, A. (1989). Droplet separation. VCH Publishers.
  6. El-Dessouky, H. T., Alatiqi, I. M., Ettouney, H. M., Al-Deffeeri, N. S. (1999). Performance of wire mesh mist eliminator, Chemical Engineering and Processing: Process Intensification, 39(2), 129-139.
  7. Kim, M. W., Noh, S. Y., Zahir, M. Z., and Yook, S. J. (2021). Performance improvement of a horizontal zigzag type mist eliminator using slit plates. Journal of Mechanical Science and Technology, 35(5), 2229-2236.
  8. Fabian, P., Cusack, R., Hennessey, P., and Neuman, M. (1993). Demystifying the selection of mist eliminators, Chemical engineering, 100(11), 148.
  9. Galletti, C., Brunazzi, E., and Tognotti, L. (2008). A numerical model for gas flow and droplet motion in wave-plate mist eliminators with drainage channels, Chemical engineering science, 63(23), 5639-5652. https://doi.org/10.1016/j.ces.2008.08.013
  10. Gharib, J., and Moraveji, M. K. (2012). Determination the factors affecting the vane-plate demisters efficiency using CFD modeling, J. Chem. Eng. Process. Technol. S, 1, 1-5.
  11. James, P. W., Wang, Y., Azzopardi, B. J., and Hughes, J. P. (2003). The role of drainage channels in the performance of wave-plate mist eliminators, Chemical Engineering Research and Design, 81(6), 639-648. https://doi.org/10.1205/026387603322150499
  12. James, P. W., Azzopardi, B. J., Wang, Y., and Hughes, J. P. (2005). A model for liquid film flow and separation in a wave-plate mist eliminator, Chemical Engineering Research and Design, 83(5), 469-477. https://doi.org/10.1016/S0263-8762(05)72724-6
  13. Kouhikamali, R., Abadi, S. N. R., and Hassani, M. (2014). Numerical study of performance of wire mesh mist eliminator, Applied Thermal Engineering, 67(1-2), 214-222. https://doi.org/10.1016/j.applthermaleng.2014.02.073
  14. Mao, F., Tian, R., Chen, Y., Chen, B., Wang, B., and Sun, L. (2018). Re-entrainment in and optimization of a vane mist eliminator, Annals of Nuclear Energy, 120, 656-665. https://doi.org/10.1016/j.anucene.2018.06.011
  15. Narimani, E., and Shahhoseini, S. (2011). Optimization of vane mist eliminators, Applied Thermal Engineering, 31(2-3), 188-193.
  16. Zhao, J., Jin, B., and Zhong, Z. (2007). Study of the separation efficiency of a demister vane with response surface methodology, Journal of Hazardous Materials, 147(1-2), 363-369.