DOI QR코드

DOI QR Code

Thermal buckling analysis of metal-ceramic functionally graded plates by natural element method

  • J.R., Cho (Department of Naval Architecture and Ocean Engineering, Hongik University)
  • 투고 : 2022.03.09
  • 심사 : 2022.12.05
  • 발행 : 2022.12.25

초록

Functionally graded materials (FGMs) have been spotlighted as an advanced composite material, accordingly the intensive studies have focused on FGMs to examine their mechanical behaviors. Among them is thermal buckling which has been a challenging subject, because its behavior is connected directly to the safety of structural system. In this context, this paper presents the numerical analysis of thermal buckling of metal-ceramic functionally graded (FG) plates. For an accurate and effective buckling analysis, a new numerical method is developed by making use of (1,1,0) hierarchical model and 2-D natural element method (NEM). Based on 3-D elasticity theory, the displacement field is expressed by a product of 1-D assumed thickness monomials and 2-D in-plane functions which are approximated by NEM. The numerical method is compared with the reference solutions through the benchmark test, from which its numerical accuracy has been verified. Using the developed numerical method, the critical buckling temperatures of metal-ceramic FG plates are parametrically investigated with respect to the major design parameters.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1A2C1100924).

참고문헌

  1. Abdelhak, Z., Hadji, L., Daouadji, H. and Bedia, E.A. (2016), "Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions", Smart Struct. Syst., 18(2), 267-291. https://doi.org/10.12989/sss.2016.18.2.267.
  2. Akgoz, B. and Civalek, O. (2014), "Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium", Int. J. Eng. Sci., 85, 90-104. https://doi.org/10.1016/j.ijengsci.2014.08.011.
  3. Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60(5), 195-216. https://doi.org/10.1115/1.2777164.
  4. Boley, B.A. and Weiner, J.J. (1960), Theory of Thermal Stress, Wiley, New York.
  5. Bouiadjra, M.B., Ahmed Houari, M.S. and Tounsi, A. (2012), "Thernal buckling of functionally graded plates according to a four-variable refined plate theory", J. Therm. Stress., 35(8), 677-694. https://doi.org/10.1080/01495739.2012.688665.
  6. Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A. and Beg, O.A. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscal beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.
  7. Chen, C.S., Lin, C.Y. and Chien, R.D. (2011), "Thermally induced buckling of functionally graded hybrid composite plates", Int. J. Mech. Sci., 53, 51-58. https://doi.org/10.1016/j.ijmecsci.2010.10.006.
  8. Chinesta, F., Cescotto, C., Cueto, E. and Lorong, P. (2013), Natural Element Method for the Simulation of Structures and Processes, Wiley.
  9. Cho, J.R. (2020), "Natural element approximation of hierarchical models of plate-like elastic structures", Finite. Elem. Anal. Des., 180, 103439. https://doi.org/10.1016/j.finel.2020.103439.
  10. Cho, J.R. (2021), "Natural element hierarchical models for the free vibration analyses of laminate composite plates", Compos. Struct., 272, 114247. https://doi.org/10.1016/j.compstruct.2021.114147.
  11. Cho, J.R. and Ha, D.Y. (2001), "Averaging and finite-element discretization approaches in the numerical analysis of functionally graded materials", Mater. Sci. Eng. A, 302, 187-196. https://doi.org/10.1016/S0921-5093(00)01835-9.
  12. Cho, J.R. and Ha, D.Y. (2002), "Volume fraction optimization for minimizing thermal stress in Ni-Al2O3 functionally graded materials", Mater. Sci. Eng. A, 334, 147-155. https://doi.org/10.1016/S0921-5093(01)01791-9.
  13. Cho, J.R. and Oden, J.T. (2000), "Functionally graded material: a parametric study on thermal stress characteristics using the Crank-Nicolson-Galerkin scheme", Comput. Meth. Appl. Mech. Eng., 188, 17-38. https://doi.org/10.1016/S0045-7825(99)00289-3.
  14. Dolbow, J.E. and Gosz, M. (2002), "On the computation of mixed-mode stress intensity factors in functionally graded materials", Int. J. Solid. Struct., 39(9), 2557-2574. https://doi.org/10.1016/S0020-7683(02)00114-2.
  15. Ebrahimi, F. and Rastgo, A. (2008), "An analytical study on the free vibration of smart circular thin FG plate based on classical plate theory", Thin Wall. Struct., 66(12), 1402-1408. https://doi.org/10.1016/j.tws.2008.03.008.
  16. Ganapathi, M. and Touratier, M. (1997), "A study on thermal postbuckling behavior of laminated composite plates using a shear-flexible finite element", Finite Elem. Anal. Des., 28, 115-135. https://doi.org/10.1016/S0168-874X(97)81955-5.
  17. Gowda, R.M.S. and Pandalai, K.A.V. (1970), Thermal Buckling of Orthotropic Plates, IIT, Madras.
  18. Javaheri, R. and Eslami, M.R. (2002), "Thermal buckling of functionally graded plates", AIAA J., 40, 162-169. https://doi.org/10.2514/2.1626.
  19. Khalfi, Y., Houari, M.S.A. and Tounsi, A. (2014), "A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation", Int. J. Comput. Meth., 11(5), 1350077. https://doi.org/10.1142/S0219876213500771.
  20. Kiani, Y. and Eslami, M.R. (2010), "Thermal buckling analysis of functionally graded material beams", Int. J. Mech. Mater. Des., 6, 229-238. https://doi.org/10.1007/s10999-010-9132-4.
  21. Kim, J. and Reddy, J.N. (2013), "Analytical solutions for bending, vibration, and buckling id FG plates using a couple stress-based third-order theory", Compos. Struct., 103, 86-98. https://doi.org/10.1016/j.compstruct.2013.03.007.
  22. Kim, J.H. and Paulino, G.H. (2002), "Finite element evaluation of mixed mode stress intensity factors in functionally graded materials", Int. J. Numer. Meth. Eng., 53, 1903-1935. https://doi.org/10.1002/nme.364.
  23. Lee, Y.H., Bae, S.I. and Kim, J.H. (2016), "Thermal buckling behavior of functionally graded plates based on neutral surface", Compos. Struct., 137, 208-214. https://doi.org/10.1016/j.compstruct.2015.11.023.
  24. Lipton, R. (2002), "Design of functionally graded composite structure in the presence of stress constraints", Int. J. Solid. Struct., 39(9), 2575-2586. https://doi.org/10.1016/S0020-7683(02)00129-4.
  25. Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X.
  26. Matsunaga, H. (2009), "Thermal buckling of functionally graded plates according to a 2D higher-order deformation theory", Compos. Struct., 90(1), 76-86. https://doi.org/10.1016/j.compstruct.2009.02.004.
  27. Mekerbi, M., Benyoucef, S., Mahmoudi, A., Bourada, F. and Tounsi, A. (2019), "Investigation on thermal buckling of porous FG plate resting on elastic foundation via quasi 3D solution", Struct. Eng. Mech., 72(4), 513-524. https://doi.org/10.12989/sem.2019. 72.4.513.
  28. Miyamoto, Y., Kaysser, W.A., Rabin, B.H. and Kawasaki, A. (2013), Functionally Graded Materials: Design. Processing and Applications, Springer Science & Business Media.
  29. Morimoto, T., Tanigawa, Y. and Kawamura, R. (2006), "Thermal buckling of functionally graded rectangular plates subjected to partial heating", Int. J. Mech. Sci., 48, 926-937. https://doi.org/10.1016/j.ijmecsci.2006.03.015.
  30. Na, K.S. and Kim, J.H. (2006), "Three-dimensional thermomechanical buckling analysis for functionally graded composite plates", Compos. Struct., 73, 413-422. https://doi.org/10.1016/j.compstruct.2005.02.012.
  31. Najafizadeh, M.M. and Heydari, H.R. (2004), "Thermal buckling of functionally graded circular plates based on higher order shear deformation plate theory", Eur. J. Mech. A/Solid., 23, 1085-1100. https://doi.org/10.1016/j.euromechsol.2004.08.004.
  32. Nie, G.J., Zhong, Z. and Batra, R.C. (2018), "Material tailoring for reducing stress concentration factor at a circular hole in a functionally graded materials (FGM) panel", Compos. Struct., 205, 49-57. https://doi.org/10.1016/j.compstruct.2018.08.078.
  33. Noda, N. (1999), "Thermal residual stresses in functionally graded materials", J. Therm. Stress., 22, 477-512. https://doi.org/10.1016/0921-5093(95)09773-2.
  34. Ravichandran, K.S. (1995), "Thermal residual stresses in a functionally graded material system", Mater. Sci. Eng. A, 201, 269-276. https://doi.org/10.1016/0921-5093(95)09773-2.
  35. Samsam Shariat, B.A. and Eslami, M.R. (2006), "Thermal buckling of imperfect functionally graded plates", Int. J. Solid. Struct., 43, 4082-4096. https://doi.org/10.1016/j.ijsolstr.2005.04.005.
  36. She, G.L., Yuan, F.G. and Ren, Y.R. (2017), "Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory", Appl. Math. Model., 47, 340-357. https://doi.org/10.1016/j.apm.2017.03.014.
  37. Sukumar, N., Moran, A. and Belytschko, T. (1998), "The natural element method in solid mechanics", Int. J. Numer. Meth. Eng., 43, 839-887. https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO,2-R.
  38. Thangaratnam, K.R. and Ramachandran, J. (1989), "Thermal buckling of composite laminated plates", Comput. Struct., 32(5), 1117-1124. https://doi.org/10.1016/0045-7949(89)90413-6.
  39. Trabelsi, S., Frikha, A., Zghal, S. and Dammak, F. (2019), "A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells", Eng. Struct., 178, 444-459. https://doi.org/10.1016/j.engstruct.2018.10.047.
  40. Wattanasakulpong, N., Gangadhara Prusty, B. and Kelly, D.W. (2011), "Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams", Int. J. Mech. Sci., 53, 734-743. https://doi.org/10.1016/j.ijmecsci.2011.06.005.
  41. Yang, J. and Shen, H.S. (2001), "Dynamic response of initially stressed functionally graded rectangular thin plates", Compos. Struct., 54(4), 497-508. https://doi.org/10.1016/S0263-8223(01)00122-2.
  42. Yu, T., Bui, T.Q., Yin, S., Doan, D.H., Wu, C.T., Van Do, T. and Tanaka, S. (2016), "On the thermal buckling analysis of functionally graded plates with intermal defects using extended isogeometric analysis", Compos. Struct., 136, 684-695. https://doi.org/10.1016/j.compstruct.2015.11.002.
  43. Zenkour, A.M. and Sobhy, M. (2014), "Thermal buckling of fuctionally graded plates resting on elastic foundation using the trigonometric theory", J. Therm. Stress., 34(11), 1119-1138. https://doi.org/10.1080/01495739.2011.606017.
  44. Zhang, L.W., Zhu, P. and Liew, K.M. (2014), "Thermal buckling of functionally graded plates using a local Kriging meshless method", Compos. Struct., 108, 472-492. https://doi.org/10.1016/j.compstruct.2013.09.043.
  45. Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Mechanical and thermal buckling analysis of functionally graded plates", Compos. Struct., 90(2), 161-171. https://doi.org/10.1016/j.compstruct.2009.03.005.
  46. Zienkiewicz, O.C., Taylor, R.L. and Too, J.M. (1971), "Reduced integration technique in general analysis of plates and shells", Int. J. Numer. Meth. Eng., 3(2), 275-290. https://doi.org/10.1002/nme.1620030211.