과제정보
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1A2C1100924).
참고문헌
- Abdelhak, Z., Hadji, L., Daouadji, H. and Bedia, E.A. (2016), "Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions", Smart Struct. Syst., 18(2), 267-291. https://doi.org/10.12989/sss.2016.18.2.267.
- Akgoz, B. and Civalek, O. (2014), "Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium", Int. J. Eng. Sci., 85, 90-104. https://doi.org/10.1016/j.ijengsci.2014.08.011.
- Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60(5), 195-216. https://doi.org/10.1115/1.2777164.
- Boley, B.A. and Weiner, J.J. (1960), Theory of Thermal Stress, Wiley, New York.
- Bouiadjra, M.B., Ahmed Houari, M.S. and Tounsi, A. (2012), "Thernal buckling of functionally graded plates according to a four-variable refined plate theory", J. Therm. Stress., 35(8), 677-694. https://doi.org/10.1080/01495739.2012.688665.
- Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A. and Beg, O.A. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscal beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.
- Chen, C.S., Lin, C.Y. and Chien, R.D. (2011), "Thermally induced buckling of functionally graded hybrid composite plates", Int. J. Mech. Sci., 53, 51-58. https://doi.org/10.1016/j.ijmecsci.2010.10.006.
- Chinesta, F., Cescotto, C., Cueto, E. and Lorong, P. (2013), Natural Element Method for the Simulation of Structures and Processes, Wiley.
- Cho, J.R. (2020), "Natural element approximation of hierarchical models of plate-like elastic structures", Finite. Elem. Anal. Des., 180, 103439. https://doi.org/10.1016/j.finel.2020.103439.
- Cho, J.R. (2021), "Natural element hierarchical models for the free vibration analyses of laminate composite plates", Compos. Struct., 272, 114247. https://doi.org/10.1016/j.compstruct.2021.114147.
- Cho, J.R. and Ha, D.Y. (2001), "Averaging and finite-element discretization approaches in the numerical analysis of functionally graded materials", Mater. Sci. Eng. A, 302, 187-196. https://doi.org/10.1016/S0921-5093(00)01835-9.
- Cho, J.R. and Ha, D.Y. (2002), "Volume fraction optimization for minimizing thermal stress in Ni-Al2O3 functionally graded materials", Mater. Sci. Eng. A, 334, 147-155. https://doi.org/10.1016/S0921-5093(01)01791-9.
- Cho, J.R. and Oden, J.T. (2000), "Functionally graded material: a parametric study on thermal stress characteristics using the Crank-Nicolson-Galerkin scheme", Comput. Meth. Appl. Mech. Eng., 188, 17-38. https://doi.org/10.1016/S0045-7825(99)00289-3.
- Dolbow, J.E. and Gosz, M. (2002), "On the computation of mixed-mode stress intensity factors in functionally graded materials", Int. J. Solid. Struct., 39(9), 2557-2574. https://doi.org/10.1016/S0020-7683(02)00114-2.
- Ebrahimi, F. and Rastgo, A. (2008), "An analytical study on the free vibration of smart circular thin FG plate based on classical plate theory", Thin Wall. Struct., 66(12), 1402-1408. https://doi.org/10.1016/j.tws.2008.03.008.
- Ganapathi, M. and Touratier, M. (1997), "A study on thermal postbuckling behavior of laminated composite plates using a shear-flexible finite element", Finite Elem. Anal. Des., 28, 115-135. https://doi.org/10.1016/S0168-874X(97)81955-5.
- Gowda, R.M.S. and Pandalai, K.A.V. (1970), Thermal Buckling of Orthotropic Plates, IIT, Madras.
- Javaheri, R. and Eslami, M.R. (2002), "Thermal buckling of functionally graded plates", AIAA J., 40, 162-169. https://doi.org/10.2514/2.1626.
- Khalfi, Y., Houari, M.S.A. and Tounsi, A. (2014), "A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation", Int. J. Comput. Meth., 11(5), 1350077. https://doi.org/10.1142/S0219876213500771.
- Kiani, Y. and Eslami, M.R. (2010), "Thermal buckling analysis of functionally graded material beams", Int. J. Mech. Mater. Des., 6, 229-238. https://doi.org/10.1007/s10999-010-9132-4.
- Kim, J. and Reddy, J.N. (2013), "Analytical solutions for bending, vibration, and buckling id FG plates using a couple stress-based third-order theory", Compos. Struct., 103, 86-98. https://doi.org/10.1016/j.compstruct.2013.03.007.
- Kim, J.H. and Paulino, G.H. (2002), "Finite element evaluation of mixed mode stress intensity factors in functionally graded materials", Int. J. Numer. Meth. Eng., 53, 1903-1935. https://doi.org/10.1002/nme.364.
- Lee, Y.H., Bae, S.I. and Kim, J.H. (2016), "Thermal buckling behavior of functionally graded plates based on neutral surface", Compos. Struct., 137, 208-214. https://doi.org/10.1016/j.compstruct.2015.11.023.
- Lipton, R. (2002), "Design of functionally graded composite structure in the presence of stress constraints", Int. J. Solid. Struct., 39(9), 2575-2586. https://doi.org/10.1016/S0020-7683(02)00129-4.
- Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X.
- Matsunaga, H. (2009), "Thermal buckling of functionally graded plates according to a 2D higher-order deformation theory", Compos. Struct., 90(1), 76-86. https://doi.org/10.1016/j.compstruct.2009.02.004.
- Mekerbi, M., Benyoucef, S., Mahmoudi, A., Bourada, F. and Tounsi, A. (2019), "Investigation on thermal buckling of porous FG plate resting on elastic foundation via quasi 3D solution", Struct. Eng. Mech., 72(4), 513-524. https://doi.org/10.12989/sem.2019. 72.4.513.
- Miyamoto, Y., Kaysser, W.A., Rabin, B.H. and Kawasaki, A. (2013), Functionally Graded Materials: Design. Processing and Applications, Springer Science & Business Media.
- Morimoto, T., Tanigawa, Y. and Kawamura, R. (2006), "Thermal buckling of functionally graded rectangular plates subjected to partial heating", Int. J. Mech. Sci., 48, 926-937. https://doi.org/10.1016/j.ijmecsci.2006.03.015.
- Na, K.S. and Kim, J.H. (2006), "Three-dimensional thermomechanical buckling analysis for functionally graded composite plates", Compos. Struct., 73, 413-422. https://doi.org/10.1016/j.compstruct.2005.02.012.
- Najafizadeh, M.M. and Heydari, H.R. (2004), "Thermal buckling of functionally graded circular plates based on higher order shear deformation plate theory", Eur. J. Mech. A/Solid., 23, 1085-1100. https://doi.org/10.1016/j.euromechsol.2004.08.004.
- Nie, G.J., Zhong, Z. and Batra, R.C. (2018), "Material tailoring for reducing stress concentration factor at a circular hole in a functionally graded materials (FGM) panel", Compos. Struct., 205, 49-57. https://doi.org/10.1016/j.compstruct.2018.08.078.
- Noda, N. (1999), "Thermal residual stresses in functionally graded materials", J. Therm. Stress., 22, 477-512. https://doi.org/10.1016/0921-5093(95)09773-2.
- Ravichandran, K.S. (1995), "Thermal residual stresses in a functionally graded material system", Mater. Sci. Eng. A, 201, 269-276. https://doi.org/10.1016/0921-5093(95)09773-2.
- Samsam Shariat, B.A. and Eslami, M.R. (2006), "Thermal buckling of imperfect functionally graded plates", Int. J. Solid. Struct., 43, 4082-4096. https://doi.org/10.1016/j.ijsolstr.2005.04.005.
- She, G.L., Yuan, F.G. and Ren, Y.R. (2017), "Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory", Appl. Math. Model., 47, 340-357. https://doi.org/10.1016/j.apm.2017.03.014.
- Sukumar, N., Moran, A. and Belytschko, T. (1998), "The natural element method in solid mechanics", Int. J. Numer. Meth. Eng., 43, 839-887. https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO,2-R.
- Thangaratnam, K.R. and Ramachandran, J. (1989), "Thermal buckling of composite laminated plates", Comput. Struct., 32(5), 1117-1124. https://doi.org/10.1016/0045-7949(89)90413-6.
- Trabelsi, S., Frikha, A., Zghal, S. and Dammak, F. (2019), "A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells", Eng. Struct., 178, 444-459. https://doi.org/10.1016/j.engstruct.2018.10.047.
- Wattanasakulpong, N., Gangadhara Prusty, B. and Kelly, D.W. (2011), "Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams", Int. J. Mech. Sci., 53, 734-743. https://doi.org/10.1016/j.ijmecsci.2011.06.005.
- Yang, J. and Shen, H.S. (2001), "Dynamic response of initially stressed functionally graded rectangular thin plates", Compos. Struct., 54(4), 497-508. https://doi.org/10.1016/S0263-8223(01)00122-2.
- Yu, T., Bui, T.Q., Yin, S., Doan, D.H., Wu, C.T., Van Do, T. and Tanaka, S. (2016), "On the thermal buckling analysis of functionally graded plates with intermal defects using extended isogeometric analysis", Compos. Struct., 136, 684-695. https://doi.org/10.1016/j.compstruct.2015.11.002.
- Zenkour, A.M. and Sobhy, M. (2014), "Thermal buckling of fuctionally graded plates resting on elastic foundation using the trigonometric theory", J. Therm. Stress., 34(11), 1119-1138. https://doi.org/10.1080/01495739.2011.606017.
- Zhang, L.W., Zhu, P. and Liew, K.M. (2014), "Thermal buckling of functionally graded plates using a local Kriging meshless method", Compos. Struct., 108, 472-492. https://doi.org/10.1016/j.compstruct.2013.09.043.
- Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Mechanical and thermal buckling analysis of functionally graded plates", Compos. Struct., 90(2), 161-171. https://doi.org/10.1016/j.compstruct.2009.03.005.
- Zienkiewicz, O.C., Taylor, R.L. and Too, J.M. (1971), "Reduced integration technique in general analysis of plates and shells", Int. J. Numer. Meth. Eng., 3(2), 275-290. https://doi.org/10.1002/nme.1620030211.