DOI QR코드

DOI QR Code

DEFERRED STRONGLY CESÀRO SUMMABLE AND STATISTICALLY CONVERGENT FUNCTIONS

  • Received : 2022.04.26
  • Accepted : 2022.08.01
  • Published : 2022.12.25

Abstract

In this paper, firstly we introduce the concepts of deferred Cesàro summable and deferred statistically convergent function, and secondly we introduce the concepts of deferred almost summable and deferred almost statistically convergent functions. Furthermore, we investigate the relations between these concepts.

Keywords

References

  1. R. P. Angew, On deferred Cesaro mean, Commun. Ann. Math. 33 (1932), 413-421. https://doi.org/10.2307/1968524
  2. D. Borwein, Linear functionals with strong Cesaro summability, J. London Math. Soc. 40 (1965), 628-634. https://doi.org/10.1112/jlms/s1-40.1.628
  3. R. C. Buck, Generalized asymptotic density, Amer. J. Math. 75 (1953), 335-346. https://doi.org/10.2307/2372456
  4. J. S. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis, 8 (1988), 47-63. https://doi.org/10.1524/anly.1988.8.12.47
  5. J. S. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (1989), 194-198. https://doi.org/10.4153/CMB-1989-029-3
  6. H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244
  7. A. R. Freedman, J.J. Sember, and M. Raphael, Some Cesaro-type summability spaces, Proc. London Math. Soc. 3 (1978), no. 3, 508-520.
  8. J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313. https://doi.org/10.1524/anly.1985.5.4.301
  9. J. A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific. J. Math. 160 (1993), 43-51. https://doi.org/10.2140/pjm.1993.160.43
  10. M. Kucukaslan and M. Yilmazturk, On deferred statistical convergence of sequences, Kyungpook Math. J. 56 (2016), 357-366. https://doi.org/10.5666/KMJ.2016.56.2.357
  11. L. Leindler, On the summability of fourier series, Acta Sci. Math. 29 (1968) 147-162.
  12. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 29 (1968), 147-162.
  13. I. Maddox, Elements of Functional Analysis, Cambridge University Press, Cambridge, 1970.
  14. I. Maddox, A new type of convergence, Math. Proc. Cambridge Phil. Soc. 83 (1978), no. 1, 61-64. https://doi.org/10.1017/S0305004100054281
  15. F. Nuray and B. Aydin, Strongly summable and statistically convergent functions, Infor. Tech. Cont. 1 (2004), no. 30, 73-76.
  16. F. Nuray, λ-strongly summable and λ-statistically convergent functions, Iran. J. Sci. Tech. Trans. A 34 (2010), 335-338.
  17. T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139-150.
  18. I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361-375. https://doi.org/10.2307/2308747
  19. H.M. Srivastava and M. Et, Lacunary statistical sonvergence and strongly lacunary summable functions of order α, Filomat, 31 (2017), no. 6, 1573-1582. https://doi.org/10.2298/FIL1706573S
  20. H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-74. https://doi.org/10.4064/cm-2-2-98-108