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DEFERRED STRONGLY CESÀRO SUMMABLE AND

STATISTICALLY CONVERGENT FUNCTIONS

Fatih Nuray, Erdinç Dündar, and Uǧur Ulusu∗

Abstract. In this paper, firstly we introduce the concepts of deferred

Cesàro summable and deferred statistically convergent function, and sec-

ondly we introduce the concepts of deferred almost summable and de-
ferred almost statistically convergent functions. Furthermore, we investi-

gate the relations between these concepts.

1. Introduction

A sequence (xk) is said to be strongly Cesàro summable to the number L if

lim
n→∞

1

n

n∑
k=1

|xk − L| = 0.

Nearly all of the transformations used in the theory of summability have
undesirable features. For example the Cesàro transformation of any given
positive order increases ultimate bounds and oscillations of certain sequences
of functions, and does not always preserve uniform convergence, or continu-
ous convergence, of sequences of functions. Deferred Cesàro means have useful
properties not possessed by Cesàro’s and other well known transformations. R.
P. Agnew [1] defined the deferred Cesàro mean D(pn, qn) as a generalization of
Cesàro mean of real (or complex) valued sequence (xk) by

Dn(xk) =
1

q(n)− p(n)

q(n)∑
k=p(n)+1

xk, n = 1, 2, 3, ...,

where p = {p(n) : n ∈ N} and q = {q(n) : n ∈ N} are the sequences of
non-negative integers satisfying p(n) < q(n) and limn→∞ q(n) = ∞.
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In the notation of matrix transformation

Dn(xk) =

∞∑
k=0

ankxk,

where

ank =


1

q(n)− p(n)
, p(n) < k ≤ q(n)

0 , otherwise.

In [1] it is known that D(p(n), q(n)) is regular if p(n) < q(n) and
limn→∞ q(n) = ∞. Note that Dn(n − 1, n) is the identity transformation
and D(0, n) is the (C, 1) transformation of (xk).

A sequence (xk) is said to be strongly deferred Cesàro convergent to L ∈ R
if

lim
n→∞

1

q(n)− p(n)

q(n)∑
k=p(n)+1

|xk − L| = 0.

The idea of statistical convergence was introduced by Fast [6] and since
then has been studied by other authors including [3], [4], [5], [8], [9], [15],
[17], [18], [19] and [20]. Over the years and under different names, statisti-
cal convergence has been discussed in the theory of Fourier analysis, ergodic
theory, number theory, measure theory, trigonometric series, turnpike theory
and Banach spaces. There is a natural relationship between statistical conver-
gence and strong Cesàro summability [4].

A sequence (xk) is said to be statistically convergent to the number L ∈ R
if for every ε > 0,

lim
n→∞

1

n

∣∣{k ≤ n : |xk − L| ≥ ε
}∣∣ = 0,

where the vertical bars indicate the number of elements in the enclosed set.
The concept of deferred statistical convergence was introduced in [10].
A sequence (xk) is said to be deferred statistically convergent to the number

L ∈ R if for every ε > 0,

lim
n→∞

1

p(n)− q(n)

∣∣{p(n) < k ≤ q(n) : |xk − L| ≥ ε
}∣∣ = 0.

Let A = (ank) be an infinite matrix and x = (xk) be a sequence. Let E
and F be two non-empty subset of the space w of complex numbers. We write
Ax = (Anx) if An(x) =

∑∞
k=1 aknxk converges for each n. If x = (xk) ∈ E

implies Ax ∈ F , we say that A defines a matrix transformation from E to F .
A matrix A is said to be regular if A transforms every convergent sequence to
convergent sequence by preserving the limit.

Following conditions are, by the Silverman-Toeplitz Theorem [13], necessary
and sufficient conditions for regularity of A = (ank):
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(i) sup
n

∞∑
k=1

|ank| < ∞,

(ii) lim
n→∞

ank = 0, for each k ∈ N,

(iii) lim
n→∞

∞∑
k=1

ank = 1.

Definition 1.1. [16] Let f be a real valued function, measurable (in the
Lebesgue sense) in the interval (1,∞). f is said to be Cesàro summable to
ℓ = ℓf if

lim
n→∞

1

n

∫ n

1

f(t)dt = ℓ.

Definition 1.2. [2] Let f be a real valued function, measurable (in the
Lebesgue sense) in the interval (1,∞). f is said to be strongly Cesàro summable
to ℓ = ℓf if

lim
n→∞

1

n

∫ n

1

|f(t)− ℓ|dt = 0.

Definition 1.3. [16] Let f be a real valued function, measurable (in the
Lebesgue sense) in the interval (1,∞). f is said to be statistically convergent
to ℓ = ℓf if

lim
n→∞

1

n

∣∣{1 < t ≤ n : |f(t)− ℓ| ≥ ε
}∣∣ = 0,

where the vertical bars indicate the Lebesque measure of the enclosed set. It
is denoted by f(t) → ℓ(S).

2. Deferred Strongly Cesàro Summable and Statistically Conver-
gent Functions

Definition 2.1. Let f be a real valued function, measurable (in the Lebesgue
sense) in the interval (1,∞). f is said to be deferred Cesàro summable to ℓ = ℓf
if

lim
n→∞

1

q(n)− p(n)

∫ q(n)

p(n)

f(t)dt = ℓ.

Definition 2.2. Let f be a real valued function, measurable (in the Lebesgue
sense) in the interval (1,∞). f is said to be strongly deferred Cesàro summable
to ℓ = ℓf if

lim
n→∞

1

q(n)− p(n)

∫ q(n)

p(n)

|f(t)− ℓ|dt = 0.

In this case, we write f(t) → ℓ(D[p, q]).

It is clear that; if q(n) = n and p(n) = 0, then Definition 2.2 coincides with
the definition of strongly Cesàro summable function.
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Definition 2.3. Let f be a real valued function, measurable (in the Lebesgue
sense) in the interval (1,∞). f is said to be strongly r-deferred Cesàro sum-
mable (0 < r < ∞) to ℓ = ℓf if

lim
n→∞

1

q(n)− p(n)

∫ q(n)

p(n)

|f(t)− ℓ|rdt = 0.

Definition 2.4. Let f be a real valued function, measurable (in the Lebesgue
sense) in the interval (1,∞). f is said to be deferred statistically convergent
to ℓ = ℓf if

lim
n→∞

1

q(n)− p(n)

∣∣{p(n) < t ≤ q(n) : |f(t)− ℓ| ≥ ε
}∣∣ = 0,

where the vertical bars indicate the Lebesque measure of the enclosed set. In
this case, we write f(t) → ℓ(DS[p, q]).

It is clear that; if q(n) = n and p(n) = 0, then Definition 2.4 coincides with
the definition of statistical convergence of a function.

3. Inclusion Relations

Theorem 3.1. Let {p(n)}, {q(n)}, {p′
(n)} and {q′

(n)} be sequences of non-
negative integers satisfying p(n) ≤ p

′
(n) < q

′
(n) ≤ q(n) and{

q(n)− p(n)

q′(n)− p′(n)

}
is bounded for all n ∈ N, then

f(t) → ℓ(DS[p, q]) implies f(t) → ℓ(DS[p
′
, q

′
]).

Proof. From the inclusion{
p′(n) < t ≤ q′(n) : |f(t)− ℓ| ≥ ε

}
⊂

{
p(n) < t ≤ q(n) : |f(t)− ℓ| ≥ ε

}
,

we can write the inequality

1

q′(n)− p′(n)

∣∣{p′(n) < t ≤ q′(n) : |f(t)− ℓ| ≥ ε
}∣∣

≤ q(n)− p(n)

q′(n)− p′(n)

1

q(n)− p(n)

∣∣{p(n) < t ≤ q(n) : |f(t)− ℓ| ≥ ε
}∣∣.

After taking limit when n → ∞, desired result is obtained.

Theorem 3.2. Let {p(n)}, {q(n)}, {p′
(n)} and {q′

(n)} be sequences of non-
negative integers satisfying p(n) ≤ p

′
(n) < q

′
(n) ≤ q(n) and{

q(n)− p(n)

q′(n)− p′(n)

}
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is bounded for all n ∈ N, then

f(t) → ℓ(D[p, q]) implies f(t) → ℓ(D[p
′
, q

′
]).

Proof. Since the proof similar to the proof of Theorem 3.1, we omit it.

Theorem 3.3. If f(t) → ℓ(D[p, q]), then f(t) → ℓ(DS[p, q]).

Proof. Let f(t) → ℓ(D[p, q]). For an arbitrary ε > 0, we get

1

q(n)− p(n)

∫ q(n)

p(n)

|f(t)− ℓ|dt

=

 1

q(n)− p(n)

∫ q(n)

p(n)
|f(t)−ℓ|≥ε

|f(t)− ℓ|dt

+
1

q(n)− p(n)

∫ q(n)

p(n)
|f(t)−ℓ|<ε

|f(t)− ℓ|dt



≥ 1

q(n)− p(n)

∫ q(n)

p(n)
|f(t)−ℓ|≥ε

|f(t)− ℓ|dt

≥ ε

q(n)− p(n)

∣∣{p(n) < t ≤ q(n) : |f(t)− ℓ| ≥ ε
}∣∣.

Hence, we have

lim
n→∞

1

q(n)− p(n)

∣∣{p(n) < t ≤ q(n) : |f(t)− ℓ| ≥ ε
}∣∣ = 0,

that is, f(t) → ℓ(DS[p, q]).

Theorem 3.4. If f(t) bounded and f(t) → ℓ(DS[p, q]), then
f(t) → ℓ(D[p, q]).
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Proof. Suppose that f(t) → ℓ(DS[p, q]) and f(t) is bounded, say
|f(t)− ℓ| ≤ M for all t ∈ (1,∞). Given ε > 0, we get

1

q(n)− p(n)

∫ q(n)

p(n)

|f(t)− ℓ|dt

=
1

q(n)− p(n)

 ∫ q(n)

p(n)
|f(t)−ℓ|≥ε

|f(t)− ℓ|dt+
∫ q(n)

p(n)
|f(t)−ℓ|<ε

|f(t)− ℓ|dt



≤ 1

q(n)− p(n)

M

∫ q(n)

p(n)
|f(t)−ℓ|≥ε

dt+ ε

∫ q(n)

p(n)
|f(t)−ℓ|<ε

dt


≤ M

1

q(n)− p(n)

∣∣{p(n) < t ≤ q(n) : |f(t)− ℓ| ≥ ε
}∣∣

+ ε
1

q(n)− p(n)

∣∣{p(n) < t ≤ q(n) : |f(t)− ℓ| < ε
}∣∣

and so,

lim
n→∞

1

q(n)− p(n)

∫ q(n)

p(n)

|f(t)− ℓ|dt = 0.

Theorem 3.5. If the sequence
{

p(n)
q(n)−p(n)

}
n∈N

is bounded, then

f(t) → ℓ(S) implies f(t) → ℓ(DS[p, q]).

Proof. Let f(t) → ℓ(S). Then, for every ε > 0

lim
n→∞

1

n

∣∣{t ≤ n : |f(t)− ℓ| ≥ ε
}∣∣ = 0.

Hence, for every ε > 0, we can write

lim
n→∞

1

q(n)

∣∣{t ≤ q(n) : |f(t)− ℓ| ≥ ε
}∣∣ = 0.

From the inclusion{
p(n) < t ≤ q(n) : |f(t)− ℓ| ≥ ε

}
⊆

{
t ≤ q(n) : |f(t)− ℓ| ≥ ε

}
and the inequality∣∣{p(n) < t ≤ q(n) : |f(t)− ℓ| ≥ ε

}∣∣ ≤ ∣∣{t ≤ q(n) : |f(t)− ℓ| ≥ ε
}∣∣,
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we have
1

q(n)− p(n)

∣∣{p(n) < t ≤ q(n) : |f(t)− ℓ| ≥ ε
}∣∣

≤
(
1 +

p(n)

q(n)− p(n)

)
1

q(n)

∣∣{t ≤ q(n) : |f(t)− ℓ| ≥ ε
}∣∣

and so, we obtain f(t) → ℓ(DS[p, q]).

Theorem 3.6. Let q(n) = n for all n ∈ N. Then, f(t) → ℓ(DS[p, n])
if and only if f(t) → ℓ(S).

Proof. Assume that f(t) → ℓ(DS[p, n]). Then for each n ∈ N, letting
p(n) > n(1) > p(n(1)) = n(2) > p(n(2)) = n(3) > ..., we may write{

t ≤ n : |f(t)− ℓ| ≥ ε
}

=
{
t ≤ n(1) : |f(t)− ℓ| ≥ ε

}
∪
{
n(1) < t ≤ n : |f(t)− ℓ| ≥ ε

}
,

{
t ≤ n(1) : |f(t)− ℓ| ≥ ε

}
=

{
t ≤ n(2) : |f(t)− ℓ| ≥ ε

}
∪
{
n(1) < t ≤ n(2) : |f(t)− ℓ| ≥ ε

}
and {

t ≤ n(2) : |f(t)− ℓ| ≥ ε
}

=
{
t ≤ n(3) : |f(t)− ℓ| ≥ ε

}
∪
{
n(2) < t ≤ n(3) : |f(t)− ℓ| ≥ ε

}
.

This process may be continued until for some positive integer h depending
on n, we obtain{

t ≤ n(h−1) : |f(t)− ℓ| ≥ ε
}

=
{
t ≤ n(h) : |f(t)− ℓ| ≥ ε

}
∪
{
n(h−1) < t ≤ n(h) : |f(t)− ℓ| ≥ ε

}
,

where n(h) ≥ 1 and n(h+1) = 0. Therefore, we can write

1

n

∣∣{1 < t ≤ n : |f(t)− ℓ| ≥ ε
}∣∣ = h∑

r=0

n(r) − n(r+1)

n
tr

for every n, where

tr =
1

n(r) − n(r+1)

{
n(r) < t ≤ n(r+1) : |f(t)− ℓ| ≥ ε

}
.

If we consider a matrix A = (anr) as

anr =


n(r) − n(r+1)

n
, r = 0, 1, 2, ..., h

0 , otherwise
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where n(0) = n, then the sequence{
1

n

∣∣{1 < t ≤ n : |f(t)− ℓ| ≥ ε
}∣∣}

is the (anr) transformation of the sequence (tr). Since the matrix (anr) is
a regular and the sequence{

1

n(r) − n(r+1)

∣∣{n(r) < t ≤ n(r+1) : |f(t)− ℓ| ≥ ε
}∣∣}

is convergent to zero, we have

lim
n→∞

1

n

∣∣{1 < t ≤ n : |f(t)− ℓ| ≥ ε
}∣∣ = 0.

Conversely, since
{

p(n)
q(n)−p(n)

}
n∈N

is bounded for q(n) = n, by Theorem 3.5, we

have f(t) → ℓ(S) implies f(t) → ℓ(DS[p, q]).

4. Deferred Almost Summability

A continuous linear functional ϕ on ℓ∞, the space of real bounded sequences,
is said to be a Banach limit if

(i) ϕ(x) ≥ 0 when the sequence (xk) has xk ≥ 0 for all k,

(ii) ϕ(e) = 1 where e = (1, 1, 1, ...) and

(iii) ϕ(xk+1) = ϕ(xk), for all (xk) ∈ l∞.

A sequence (xk) ∈ l∞ is said to be almost convergent to the value L if all
of its Banach limits equal to L. Lorentz [12] has given the following character-
ization.

A bounded sequence (xk) is almost convergent to the number L if and only
if

lim
n→∞

1

n

n∑
k=1

xm+k = L,

uniformly in m.
Maddox [14] has defined strongly almost convergent sequence as follows:
A bounded sequence (xk) is said to be strongly almost convergent to the

number L if and only if

lim
n→∞

1

n

n∑
k=1

|xm+k − L| = 0,

uniformly in m.
By a lacunary sequence [7], we mean an increasing integer sequence θ = {kn}

such that k0 = 0 and hn = kn−kn−1 → ∞ as n → ∞. The intervals determined
by θ will be denoted by In = (kn−1, kn].
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Let θ = {kn} be a lacunary sequence and f be a real valued function,
measurable (in the Lebesgue sense) in the interval (1,∞). f is said to be
strongly lacunary almost summable to ℓ if

lim
n→∞

1

hn

∫ kn+m

kn−1+m+1

|f(t)− ℓ|dt = 0,

uniformly in m.
Let θ = {kn} be a lacunary sequence and f be a real valued function,

measurable (in the Lebesgue sense) in the interval (1,∞). f is said to be
lacunary almost statistically convergent to ℓ = ℓf if

lim
n→∞

1

hn

∣∣{kn−1 +m+ 1 ≤ t ≤ kn +m : |f(t)− ℓ| ≥ ε
}∣∣ = 0,

uniformly in m.
Let (λn) be a non-decreasing sequence of positive numbers tending to ∞,

and λn+1 − λn ≤ 1, λ1 = 1. The generalized de la Vallée-Poussin mean [11] is
defined by

1

λn

n∑
k=n−λn+1

xk.

Let f be a real valued function, measurable (in the Lebesgue sense) in the
interval (1,∞). f is said to be strongly λ-almost summable to ℓ = ℓf if

lim
n→∞

1

λn

∫ n+m

k=n−λn+m+1

|f(t)− ℓ|dt = 0,

uniformly in m.
Let f be a real valued function, measurable (in the Lebesgue sense) in the

interval (1,∞). f is said to be λ-statistically almost convergent to ℓ = ℓf if

lim
n→∞

1

λn

∣∣{n− λn +m+ 1 ≤ t ≤ n+m : |f(t)− ℓ| ≥ ε
}∣∣ = 0,

uniformly in m.

Definition 4.1. Let f be a real valued function, measurable (in the Lebesgue
sense) in the interval (1,∞). f is said to be deferred almost summable to ℓ = ℓf
if

lim
n→∞

1

q(n)− p(n)

∫ q(n)+m

p(n)+m+1

f(t)dt = ℓ,

uniformly in m.

Definition 4.2. Let f be a real valued function, measurable (in the Lebesgue
sense) in the interval (1,∞). f is said to be strongly deferred almost summable
to ℓ = ℓf if

lim
n→∞

1

q(n)− p(n)

∫ q(n)+m

p(n)+m+1

|f(t)− ℓ|dt = 0,

uniformly in m. In this case, we write f(t) → ℓ(D̂[p, q]).



Deferred strongly Cesàro summable and statistically convergent functions 569

Definition 4.3. Let f be a real valued function, measurable (in the Lebesgue
sense) in the interval (1,∞). f is said to be strongly r-deferred almost sum-
mable (0 < r < ∞) to ℓ = ℓf if

lim
n→∞

1

q(n)− p(n)

∫ q(n)+m

p(n)+m+1

|f(t)− ℓ|r = 0,

uniformly in m. In this case, we write f(t) → ℓ(D̂r[p, q]).

It is clear that;

• If q(n) = n and p(n) = 0, then Definition 4.2 coincides with the definition
of strong almost summability of f .

• Let θ = {kn} be a lacunary sequence. If we consider q(n) = kn and
p(n) = kn−1, then Definition 4.2 coincides with the lacunary strong
almost summabilitiy of f .

• If q(n) = n and p(n) = n − λn, then Definition 4.2 coincides with the
strong λ-almost summability of f .

Definition 4.4. Let f be a real valued function, measurable (in the Lebesgue
sense) in the interval (1,∞). f is said to be deferred almost statistically con-
vergent to ℓ = ℓf if for every ε > 0,

lim
n→∞

1

q(n)− p(n)

∣∣{p(n) +m < t ≤ q(n) +m : |f(t)− ℓ| ≥ ε
}∣∣ = 0,

uniformly in m. In this case, we write f(t) → ℓ(D̂S[p, q]).

It is clear that;

• If q(n) = n and p(n) = 0, then Definition 4.4 coincides with the definition
of almost statistical convergence of f .

• Let θ = {kn} be a lacunary sequence. If we consider q(n) = kn and
p(n) = kn−1, then Definition 4.4 coincides with the lacunary almost
statistical convergence of f .

• If q(n) = n and p(n) = n − λn, then Definition 4.4 coincides with the
almost λ-statistical convergence of f .

Since the proofs of the following theorems are similar to the proofs of the
theorems given in the Section 3, we give the theorems without proof in order
not to repeat them.

Theorem 4.5. Let {p(n)}, {q(n)}, {p′
(n)} and {q′

(n)} be sequences of non-
negative integers satisfying p(n) ≤ p

′
(n) < q

′
(n) ≤ q(n) for all n ∈ N and

lim sup
n→∞

q(n)− p(n)

q′(n)− p′(n)
< ∞,

then f(t) → ℓ(D̂S[p, q]) implies f(t) → ℓ(D̂S[p
′
, q

′
]).
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Theorem 4.6. Let {p(n)}, {q(n)}, {p′
(n)} and {q′

(n)} be sequences of non-
negative integers satisfying p(n) ≤ p

′
(n) < q

′
(n) ≤ q(n) for all n ∈ N and

lim sup
n→∞

q(n)− p(n)

q′(n)− p′(n)
< ∞,

then f(t) → ℓ(D̂[p, q]) implies f(t) → ℓ(D̂[p
′
, q

′
]).

Theorem 4.7. If f(t) is strongly deferred almost convergent to ℓ, then f(t)

is deferred almost statistically convergent to ℓ, that is, if f(t) → ℓ(D̂[p, q]), then

f(t) → ℓ(D̂S[p, q]).

Theorem 4.8. If f(t) is bounded and deferred almost statistically conver-
gent to ℓ, then f(t) is strongly deferred almost convergent to ℓ, that is, if f is

bounded and f(t) → ℓ(D̂S[p, q]), then f(t) → ℓ(D̂[p, q]).

Theorem 4.9. If the sequence
{

p(n)
q(n)−p(n)

}
n∈N

is bounded, then

f(t) → ℓ(Ŝ) implies f(t) → ℓ(D̂S[p, q]).

Theorem 4.10. Let q(n) = n for all n ∈ N. Then, f(t) → ℓ(D̂S[p, n])

if and only if f(t) → ℓ(Ŝ).
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[17] T. Šalàt, On statistically convergent sequences of real numbers, Math. Slovaca, 30

(1980), 139–150.
[18] I. J. Schoenberg, The integrability of certain functions and related summability methods,

Amer. Math. Monthly 66 (1959), 361–375.

[19] H.M. Srivastava and M. Et, Lacunary statistical sonvergence and strongly lacunary
summable functions of order α, Filomat, 31 (2017), no. 6, 1573–1582.

[20] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq.

Math. 2 (1951), 73–74.

Fatih Nuray
Afyon Kocatepe University,
03200, Afyonkarahisar, Turkey.
E-mail: fnuray@aku.edu.tr
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