DOI QR코드

DOI QR Code

Buckling performance of pultruded glass fiber reinforced polymer profiles infilled with waste steel fiber reinforced concrete under axial compression

  • Emrah, Madenci (Necmettin Erbakan University, Department of Civil Engineering) ;
  • Sabry, Fayed (Department of civil engineering, Faculty of Engineering, Kafrelshiekh University) ;
  • Walid, Mansour (Department of civil engineering, Faculty of Engineering, Kafrelshiekh University) ;
  • Yasin Onuralp, Ozkilic (Necmettin Erbakan University, Department of Civil Engineering)
  • 투고 : 2022.10.27
  • 심사 : 2022.11.29
  • 발행 : 2022.12.10

초록

This study reports the results of a series of tests of pultruded glass fiber reinforced polymer (P-GFRP) box section composite profile columns, geometrically similar with/without concrete core, containing 0-1-2-3% steel fiber, with different lengths. The recycled steel wires were obtained from waste tyres. The effects of steel fiber ratio on the collapse and size effect of concrete filled P-GFRP columns under axial pressure were investigated experimentally and analytically. A total of 36 columns were tested under compression. The presence of pultruded profile and steel wire ratio were selected as the primary variable. The capacity of pultruded profiles with infilled concrete are averagely 9.3 times higher than the capacity of concrete without pultruded profile. The capacity of pultruded profiles with infilled concrete are averagely 34% higher than that of the pultruded profiles without infilled concrete. The effects of steel wire ratio are more pronounced in slender columns which exhibit buckling behavior. Moreover, the proposed analytical approach to calculate the capacity of P-GFRP columns successfully predicted the experimental findings in terms of both pure axial and buckling capacity.

키워드

과제정보

Emrah Madenci: Methodology, Conceptualization, Formal Analysis, Writing - original draft, Writing - review & editing ; Sabry Fayed: Conceptualization, Writing - original draft, Writing - review & editing Walid Mansour: Conceptualization, Writing - original draft, Writing - review & editing Yasin Onuralp Ozkilic: Writing - original draft, Writing - review & editing, Data curation, Formal Analysis, Methodology, Conceptualization

참고문헌

  1. Ahmad, J., Martinez-Garcia, R., Algarni, S., de-Prado-Gil, J., Alqahtani, T. and Irshad, K. (2022), "Characteristics of Sustainable Concrete with Partial Substitutions of Glass Waste as a Binder Material", Int. J. Concrete Struct. Mater., 16(1), 1-18. https://doi.org/10.1186/s40069-021-00488-3
  2. Ahmed, S.N., Sor, N.H., Ahmed, M.A. and Qaidi, S.M. (2022), "Thermal conductivity and hardened behavior of eco-friendly concrete incorporating waste polypropylene as fine aggregate", Mater. Today: Proceedings, 57, 818-823. https://doi.org/10.1016/j.matpr.2022.02.417
  3. Aksoylu, C., Ozkilic, Y.O., Hadzima-Nyarko, M., Isik, E. and Arslan, M.H. (2022), "Investigation on improvement in shear performance of reinforced-concrete beams produced with recycled steel wires from waste tires", Sustainability, 14(20), 13360.
  4. Aksoylu, C., Ozkilic, Y.O., Madenci, E. and Safonov, A. (2022), "Compressive behavior of pultruded GFRP boxes with concentric openings strengthened by different composite wrappings", Polymers, 14(19), 4095. https://doi.org/10.3390/polym14194095.
  5. Aktas, M. and Balcioglu, H.E. (2014), "Buckling behavior of pultruded composite beams with circular cutouts", Steel Compos. Struct., 17, 359-370. https://doi.org/10.12989/scs.2014.17.4.359.
  6. Alani, A.A., Lesovik, R., Lesovik, V., Fediuk, R., Klyuev, S., Amran, M. and Vatin, N.I. (2022), "Demolition waste potential for completely cement-free binders", Materials, 15(17), 6018.
  7. Al-Majidi, M.H., Lampropoulos, A. and Cundy, A.B. (2017), "Steel fibre reinforced geopolymer concrete (SFRGC) with improved microstructure and enhanced fibre-matrix interfacial properties", Construct. Build. Mater., 139, 286-307. https://doi.org/10.1016/j.conbuildmat.2017.02.045.
  8. Al-Saadi, A.U., Aravinthan, T. and Lokuge, W. (2018), "Structural applications of fibre reinforced polymer (FRP) composite tubes: A review of columns members", Compos. Struct., 204, 513-524. https://doi.org/10.1016/j.compstruct.2018.07.109.
  9. Alhawamdeh, M., Alajarmeh, O., Aravinthan, T., Shelley, T., Schubel, P., Mohammad, A. and Zeng, X. (2021), "Modelling flexural performance of hollow pultruded FRP profiles", Compos. Struct., 276, 114553. https://doi.org/10.1016/j.compstruct.2021.114553.
  10. Ali, A.M., Dieng, L. and Masmoudi, R. (2020), "Experimental, analytical and numerical assessment of the bond-slip behaviour in concrete-filled-FRP tubes", Eng. Struct., 225, 111254.
  11. Almeshal, I., Al-Tayeb, M.M., Qaidi, S.M., Bakar, B.A. and Tayeh, B.A. (2022), "Mechanical properties of eco-friendly cements-based glass powder in aggressive medium", Materi. Today: Proceedings, 58, 1582-1587. https://doi.org/10.1016/j.matpr.2022.03.613
  12. Amran, M., Fediuk, R., Klyuev, S. and Qader, D.N. (2022), "Sustainable development of basalt fiber-reinforced high-strength eco-friendly concrete with a modified composite binder", Case Studies Construct. Mater., 17, e01550.
  13. Beskopylny, A.N., Shcherban, E.M., Stel'makh, S.A., Meskhi, B., Shilov, A.A., Varavka, V. and Karalar, M. (2022), "Composition Component Influence on Concrete Properties with the Additive of Rubber Tree Seed Shells", Appl. Sci., 12(22), 11744.
  14. Appa Rao, G. and Sreenivasa Rao, A. (2009), "Toughness indices of steel fiber reinforced concrete under mode II loading", Mater. Struct., 42(9), 1173-1184. https://doi.org/10.1617/s11527-009-9543-6
  15. Arbili, M.M., Alqurashi, M., Majdi, A., Ahmad, J. and Deifalla, A.F. (2022), "Concrete made with iron Ore tailings as a fine aggregate: A step towards sustainable concrete", Materials. 15(18), 6236.
  16. Arslan, M.H., Yazman, S., Hamad, A.A., Aksoylu, C., Ozkilic, Y.O. and Gemi, L. (2022), "Shear strengthening of reinforced concrete T-beams with anchored and non-anchored CFRP fabrics", Structures. 39, 527-542. https://doi.org/10.1016/j.istruc.2022.03.046.
  17. ASTM-D695 (2010), Standard Test method for compressive properties of rigid plastics, United States of America.
  18. Awolusi, T.F., Oke, O.L., Atoyebi, O.D., Akinkurolere, O.O. and Sojobi, A.O. (2021), "Waste tires steel fiber in concrete: A review", Innova. Infrastruct. Solut., 6(1), 1-12. https://doi.org/10.1007/s41062-020-00383-y
  19. Barbero, E. and Tomblin, J. (1993), "Euler buckling of thin-walled composite columns", Thin-Wall. Struct., 17(4), 237-258. https://doi.org/10.1016/0263-8231(93)90005-U
  20. Basaran, B., Kalkan, I., Aksoylu, C., Ozkilic, Y.O. and Sabri, M. M.S. (2022), "Effects of waste powder, fine and coarse marble aggregates on concrete compressive strength", Sustainability, 14(21), 14388.
  21. Belabed, Y., Kerboua, B. and Tarfaoui, M. (2019), "New design for reducing interfacial stresses of reinforced structures with FRP plates", Int. J. Build. Pathology Adaptation.
  22. Cascardi, A., Dell'Anna, R., Micelli, F., Lionetto, F., Aiello, M.A. and Maffezzoli, A. (2019), "Reversible techniques for FRP-confinement of masonry columns", Construct. Build. Mater., 225, 415-428. https://doi.org/10.1016/j.conbuildmat.2019.07.124.
  23. Celik, A.I., Ozkilic, Y.O., Zeybek, O., Ozdoner, N. and Tayeh, B.A. (2022), "Performance Assessment of Fiber-Reinforced Concrete Produced with Waste Lathe Fibers", Sustainability, 14(19), 11817. https://doi.org/10.3390/su141911817.
  24. Celik, A.I., Ozkilic, Y. O., Zeybek, O., Karalar, M., Qaidi, S., Ahmad, J. and Bejinariu, C. (2022), "Mechanical behavior of crushed waste glass as replacement of aggregates", Materials, 15(22), 8093.
  25. Correia, J.R., Branco, F.A. and Ferreira, J.G. (2009), "Flexural behaviour of multi-span GFRP-concrete hybrid beams", Eng. Struct., 31(7), 1369-1381. https://doi.org/10.1016/j.engstruct.2009.02.004.
  26. Correia, M., Nunes, F., Correia, J. and Silvestre, N. (2013), "Buckling behavior and failure of hybrid fiber-reinforced polymer pultruded short columns", J. Compos. Construct., 17(4), 463-475. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000339
  27. da Silva, T.R., de Azevedo, A.R.G., Cecchin, D., Marvila, M.T., Amran, M., Fediuk, R. and Szelag, M. (2021), "Application of plastic wastes in construction materials: A review using the concept of life-cycle assessment in the context of recent research for future perspectives", Materials, 14(13), 3549.
  28. Domski, J., Katzer, J., Zakrzewski, M. and Ponikiewski, T. (2017), "Comparison of the mechanical characteristics of engineered and waste steel fiber used as reinforcement for concrete", J. Cleaner Product., 158, 18-28. https://doi.org/10.1016/j.jclepro.2017.04.165.
  29. Ezzine, M., Madani, K., Tarfaoui, M., Touzain, S. and Mallarino, S. (2019), "Comparative study of the resistance of bonded, riveted and hybrid assemblies; Experimental and numerical analyses", Struct. Eng. Mech., 70(4), 467-477. https://doi.org/10.12989/sem.2019.70.4.467.
  30. Farhan Mushtaq, S., Ali, A., Khushnood, R.A., Tufail, R.F., Majdi, A., Nawaz, A., Durdyev, S., Burduhos Nergis, D.D. and Ahmad, J. (2022), "Effect of bentonite as partial replacement of cement on residual properties of concrete exposed to elevated temperatures", Sustainability, 14(18), 11580. https://doi.org/10.3390/su141811580.
  31. Gemi, L., Alsdudi, M., Aksoylu, C., Yazman, S., Ozkilic, Y.O. and Arslan, M.H. (2022), "Optimum amount of CFRP for strengthening shear deficient reinforced concrete beams", Steel Compos. Struct., 43(6), 735-757.
  32. Gemi, L., Madenci, E. and Ozkilic, Y.O. (2021), "Experimental, analytical and numerical investigation of pultruded GFRP composite beams infilled with hybrid FRP reinforced concrete", Eng. Struct., 244, 112790. https://doi.org/10.1016/j.engstruct.2021.112790.
  33. Gemi, L., Madenci, E., Ozkilic, Y.O., Yazman, S. and Safonov, A. (2022), "Effect of fiber wrapping on bending behavior of reinforced concrete filled pultruded GFRP composite hybrid beams", Polymers, 14(18), 3740. https://doi.org/10.3390/polym14183740.
  34. Gholami, M., Mohd Sam, A.R., Marsono, A.K., Tahir, M.M. and Faridmehr, I. (2016), "Performance of steel beams strengthened with pultruded CFRP plate under various exposures", Steel Compos. Struct., 20(5), 999-1022. https://doi.org/10.12989/scs.2016.20.5.999.
  35. Goel, M.D., Bedon, C., Singh, A., Khatri, A.P. and Gupta, L.M. (2021), "An abridged review of buckling analysis of compression members in construction", Buildings. 11(5), 211.
  36. Hollaway, L. (2010), "A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties", Construct. Build. Mater., 24(12), 2419-2445. https://doi.org/10.1016/j.conbuildmat.2010.04.062
  37. Jamatia, R. and Deb, A. (2020), "FRP confined hollow concrete columns under axial compression: A comparative assessment", Compos. Struct., 236 111857.
  38. Karalar, M., Ozkilic, Y.O., Deifalla, A.F., Aksoylu, C., Arslan, M.H., Ahmad, M. and Sabri, M.M.S. (2022), "Improvement in bending performance of reinforced concrete beams produced with waste lathe scraps", Sustainability, 14(19), 12660. https://doi.org/10.3390/su141912660.
  39. Karalar, M., Bilir, T., Cavuslu, M., Ozkilic, Y.O. and Sabri, M.M.S. (2022), "Use of recycled coal bottom ash in reinforced concrete beams as replacement for aggregate", Front. Mater, 675, 1064604.
  40. Khaneghahi, M.H., Najafabadi, E.P., Bazli, M., Vatani Oskouei, A. and Zhao, X.-L. (2020), "The effect of elevated temperatures on the compressive section capacity of pultruded GFRP profiles", Construct. Build. Mater., 249, 118725.
  41. Li, C., Guo, R., Xian, G. and Li, H. (2020), "Innovative compound-type anchorage system for a large-diameter pultruded carbon/glass hybrid rod for bridge cable", Mater. Struct., 53(4), 1-15. https://doi.org/10.1617/s11527-019-1420-3
  42. Liu, Z., Huang, D., Li, N. and Lu, Y. (2022), "Mechanical behavior of steel-fiber-reinforced self-stressing concrete filled steel tube columns subjected to eccentric loading", Structures. 45, 932-950. https://doi.org/10.1016/j.istruc.2022.08.118.
  43. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427
  44. Madenci, E. (2021), "Free vibration analysis of carbon nanotube RC nanobeams with variational approaches", Adv. Nano Res., 11(2), 157-171. https://doi.org/10.12989/ANR.2021.11.2.157
  45. Madenci, E. (2021), "Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM", Steel Compos. Struct., 39(5), 493. https://doi.org/10.12989/scs.2021.39.5.493.
  46. Madenci, E., Onuralp Ozkilic, Y. and Gemi, L. (2020), "Buckling and free vibration analyses of pultruded GFRP laminated composites: Experimental, numerical and analytical investigations", Compos. Struct., 254, 112806. https://doi.org/10.1016/j.compstruct.2020.112806
  47. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020), "Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses", Compos. Struct., 242, 112162. https://doi.org/10.1016/j.compstruct.2020.112162
  48. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020), "Theoretical Investigation on Static Analysis of Pultruded GFRP Composite Beams", Akademik Platform Muhendislik ve Fen Bilimleri Dergisi. 8(3), 483-490.
  49. Madenci, E., Ozkilic, Y.O., Madenci, E. and Safonov, A. (2022), "The effects of eccentric web openings on the compressive performance of pultruded GFRP boxes wrapped with GFRP and CFRP sheets", Polymers, 14.
  50. Martinez-Garcia, R., Jagadesh, P., Zaid, O., serbanoiu, A.A., Fraile-Fernandez, F.J., de Prado-Gil, J., Qaidi, S. and Gradinaru, C.M. (2022), "The present state of the use of waste wood ash as an eco-efficient construction material: A Review", Materials, 15(15), 5349. https://doi.org/10.3390/ma15155349.
  51. Marvila, M., de Matos, P., Rodriguez, E., Monteiro, S.N. and de Azevedo, A.R. (2022), "Recycled aggregate: a viable solution for sustainable concrete production", Materials, 15(15), 5276.
  52. Mayhoub, O.A., Abadel, A.A., Alharbi, Y.R., Nehdi, M.L., de Azevedo, A.R. and Kohail, M. (2022), "Effect of polymers on behavior of ultra-high-strength concrete", Polymers. 14(13), 2585.
  53. Minchenkov, K., Vedernikov, A., Kuzminova, Y., Gusev, S., Sulimov, A., Gulyaev, A. and Safonov, A. (2022), "Effects of the quality of pre-consolidated materials on the mechanical properties and morphology of thermoplastic pultruded flat laminates", Compos. Commun., 35, 101281.
  54. Nguyen, P.L., Vu, X.H. and Ferrier, E. (2018), "Characterization of pultruded carbon fibre reinforced polymer (P-CFRP) under two elevated temperature-mechanical load cases: Residual and thermo-mechanical regimes", Construct. Build. Mater., 165, 395-412. https://doi.org/10.1016/j.conbuildmat.2017.12.244
  55. Oliveira, P.S., Antunes, M.L.P., da Cruz, N.C., Rangel, E.C., de Azevedo, A.R.G. and Durrant, S.F. (2020), "Use of waste collected from wind turbine blade production as an eco-friendly ingredient in mortars for civil construction", J. Cleaner Product., 274, 122948.
  56. Ozkilic, Y.O., Aksoylu, C., yazman, S., Gemi, L. and Arslan, M.H. (2022), "Behavior of CFRP-strengthened RC beams with circular web openings in shear zones: Numerical study", Structures. 41, 1369-1389. https://doi.org/10.1016/j.istruc.2022.05.061.
  57. Ozkilic, Y.O., Madenci, E. and Gemi, L. (2020), "Tensile and compressive behaviors of the pultruded GFRP lamina", Turkish J. Eng., 4(4), 169-175. https://doi.org/10.31127/tuje.631481
  58. Ozkilic, Y.O., Karalar, M., Aksoylu, Ceyhun., Sabri, M., Beskopylny, A.N., Stel'makh E.S.A. and Shcherban, E.M. "Flexural behavior of reinforced concrete beams using waste marble powder towards application of sustainable concrete", Frontiers in Materials, 701.
  59. Pilakoutas, K., Neocleous, K. and Tlemat, H. (2004). "Reuse of tyre steel fibres as concrete reinforcement", Proceedings of the Institution of Civil Engineers-Engineering Sustainability.
  60. Polyzois, D. and Raftoyiannis, I.G. (2000), "Compression strength of pultruded equal leg angle sections", Struct. Eng. Mech. Int. J., 9(6), 541-555. https://doi.org/10.12989/sem.2000.9.6.541.
  61. Qaidi, S., Al-Kamaki, Y.S.S., Al-Mahaidi, R., Mohammed, A.S., Ahmed, H.U., Zaid, O., Althoey, F., Ahmad, J., Isleem, H.F. and Bennetts, I. (2022), "Investigation of the effectiveness of CFRP strengthening of concrete made with recycled waste PET fine plastic aggregate", PloS one. 17(7), e0269664.
  62. Qaidi, S., Najm, H.M., Abed, S.M., Ozkilic, Y.O., Al Dughaishi, H., Alosta, M., Sabri, M.M.S., Alkhatib, F. and Milad, A. (2022), "Concrete containing waste glass as an environmentally friendly aggregate: A review on fresh and mechanical characteristics", Materials, 15(18), 6222.
  63. Qasrawi, Y., Heffernan, P.J. and Fam, A. (2015), "Performance of concrete-filled FRP tubes under field close-in blast loading", J. Compos. Construct., 19(4), 04014067.
  64. Rafiee, R. (2013), "Experimental and theoretical investigations on the failure of filament wound GRP pipes", Compos. Part B: Eng., 45(1), 257-267. https://doi.org/10.1016/j.compositesb.2012.04.009
  65. Rajak, D.K., Wagh, P.H. and Linul, E. (2021), "Manufacturing technologies of carbon/glass fiber-reinforced polymer composites and their properties: A review", Polymers. 13(21), 3721. https://doi.org/10.3390/polym13213721
  66. Rashiddadash, P., Ramezanianpour, A.A. and Mahdikhani, M. (2014), "Experimental investigation on flexural toughness of hybrid fiber reinforced concrete (HFRC) containing metakaolin and pumice", Construct. Build. Mater., 51, 313-320. https://doi.org/10.1016/j.conbuildmat.2013.10.087
  67. Reddy, J., Wang, C. and Lee, K. (1997), "Relationships between bending solutions of classical and shear deformation beam theories", Int. J. Solids Struct., 34(26), 3373-3384. https://doi.org/10.1016/S0020-7683(96)00211-9
  68. Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons
  69. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press
  70. Saribiyik, A. and Caglar, N. (2016), "Flexural strengthening of RC beams with low-strength concrete using GFRP and CFRP", Struct. Eng. Mech., 58(5), 825-845. https://doi.org/10.12989/sem.2016.58.5.825.
  71. Shcherban, E. M., Stel'makh, S.A., Beskopylny, A.N., Mailyan, L. R., Meskhi, B., Shilov, A.A. and Aksoylu, C. (2022), "Normal-weight concrete with improved stress-strain characteristics reinforced with dispersed coconut fibers", Appl. Sci., 12(22), 11734.
  72. Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038.
  73. Sivakumar, A. and Sounthararajan, V. (2013), "Toughness characterization of steel fibre reinforced concrete-A review on various international standards", J. Civ. Eng. Constr. Tech., 4, 65-69.
  74. Siwowski, T., Rajchel, M. and Kulpa, M. (2019), "Design and field evaluation of a hybrid FRP composite - Lightweight concrete road bridge", Compos. Struct., 230, 111504.
  75. Tao, Q., Niu, B., Guan, Y., Kong, J., Zhang, C. and Kong, Z. (2022), "Experimental and theoretical study on flexural behavior of high strength concrete encased steel beams with steel fibers", Structures, 41, 1359-1368. https://doi.org/10.1016/j.istruc.2022.05.073
  76. Tucci, F. and Vedernikov, A. (2021), "Design criteria for pultruded structural elements", Encycl. Mater. Compos., 51-68.
  77. Vedernikov, A., Gemi, L., Madenci, E., Onuralp Ozkilic, Y., Yazman, S., Gusev, S., Sulimov, A., Bondareva, J., Evlashin, S., Konev, S., Akhatov, I. and Safonov, A. (2022), "Effects of high pulling speeds on mechanical properties and morphology of pultruded GFRP composite flat laminates", Compos. Struct., 116216. https://doi.org/10.1016/j.compstruct.2022.116216.
  78. Vedernikov, A., Safonov, A., Tucci, F., Carlone, P. and Akhatov, I. (2020), "Pultruded materials and structures: A review", J. Compos. Mater., 54(26), 4081-4117. https://doi.org/10.1177/0021998320922894
  79. Vedernikov, A., Minchenkov, K., Gusev, S., Sulimov, A., Zhou, P., Li, C. and Safonov, A. (2022), "Effects of the pre-consolidated materials manufacturing method on the mechanical properties of pultruded thermoplastic composites", Polymers, 14(11), 2246.
  80. Vincent, T. and Ozbakkaloglu, T. (2013), "Influence of fiber orientation and specimen end condition on axial compressive behavior of FRP-confined concrete", Construct. Build. Mater., 47 814-826. https://doi.org/10.1016/j.conbuildmat.2013.05.085
  81. Yu, T., Zhao, H., Ren, T. and Remennikov, A. (2019), "Novel hybrid FRP tubular columns with large deformation capacity: Concept and behaviour", Compos. Struct., 212, 500-512. https://doi.org/10.1016/j.compstruct.2019.01.055.
  82. Zeng, J.-J., Zheng, Y.-Z. and Long, Y.-L. (2021), "Axial compressive behavior of FRP-concrete-steel double skin tubular columns with a rib-stiffened Q690 steel tube and ultra-high strength concrete", Compos. Struct., 268, 113912.
  83. Zeybek, O., Ozkilic, Y.O., Celik, A.I., Deifalla, A.F., Ahmad, M. and Sabri Sabri, M.M. (2022), "Performance evaluation of fiber-reinforced concrete produced with steel fibers extracted from waste tire", Front. Mater., 692.
  84. Zeybek, O., Ozkilic, Y.O., Karalar, M., Celik, A.I., Qaidi, S., Ahmad, J., Burduhos-Nergis, D.D. and Burduhos-Nergis, D.P. (2022), "Influence of replacing cement with waste glass on mechanical properties of concrete", Materials, 15(21), 7513. https://doi.org/10.3390/ma15217513.
  85. Zhou, P., Li, C., Bai, Y., Dong, S., Xian, G., Vedernikov, A. and Yue, Q. (2022), "Durability study on the interlaminar shear behavior of glass-fibre reinforced polypropylene (GFRPP) bars for marine applications", Construct. Build. Mater., 349, 128694.