DOI QR코드

DOI QR Code

Determination of the load carrying capacity of closed steel supports used in underground construction and mining

  • Lenka, Koubova (Department of Structural Mechanics, Faculty of Civil Engineering, VSB - Technical University of Ostrava) ;
  • Petr, Janas (Department of Structural Mechanics, Faculty of Civil Engineering, VSB - Technical University of Ostrava) ;
  • Karel, Janas (Department of Structural Mechanics, Faculty of Civil Engineering, VSB - Technical University of Ostrava) ;
  • Martin, Krejsa (Department of Structural Mechanics, Faculty of Civil Engineering, VSB - Technical University of Ostrava)
  • 투고 : 2021.12.07
  • 심사 : 2022.12.06
  • 발행 : 2022.12.10

초록

Closed steel supports of different shapes are used in mining and underground constructions. The supports are prefabricated from rolled, usually robust, steel profiles. The load carrying capacity of a support is considerably influenced by the active loading and passive forces. The passive forces are induced by interactions between the support and the surrounding rock mass. The analysis herein comprises three parts: The first part consists of structural geometry processing. The second part involves finding the numerical solution of a statically indeterminate structure for a specified load. The third part is calculation of the load carrying capacity and the components of internal forces and deformations. For this, the force method and numerical integration are used. The Winkler model is applied when the support interacts with the surrounding environment. The load carrying capacity is limited by the slip resistance of the connected parts and it is limited by reaching the ultimate state of the profile. This paper serves as a comprehensive reference for the determination of the load carrying capacity of closed steel supports and includes stepwise derivations of the governing formulas.

키워드

과제정보

This project was completed with the financial support provided to VSB-Technical University of Ostrava, by the Czech Ministry of Education, Youth and Sports from the budget for the conceptual development of science, research and innovations.

참고문헌

  1. Horyl, P., Marsalek, P., Snuparek, R. and Paczesnowski, K. (2016), "Total load-bearing capacity of yielding steel arch supports", Proceedings of the 2016 ISRM International Symposium, CRC Press, London, Taylor and Francis Group, 897-1203, ISBN:978-1-138-03265-1.
  2. Horyl, P., Snuparek, R., Marsalek, P. and Paczesnowski, K. (2017), "Simulation of laboratory tests of steel arch support", Archives Mining Sciences, 62, 163-176, https://doi:10.1515/amsc-2017-0012.
  3. Janas, P., Janas, K., Koubova, L. and Krejsa, M. (2017), "Modelling of closed steel supports for underground and mining works", Key Eng, Mater, 754, 313-316. https://doi:10.4028/www.scientific.net/KEM.754.313.
  4. Janas, P., Koubova L. and Krejsa M. (2016), "Load carrying capacity of steel arch reinforcement taking into account the geometrical and physical nonlinearity", Appl. Mech. Mater., 821, 709-716, https://doi:10.4028/www.scientific.net/AMM.821.709.
  5. Janda, T., Sejnoha, M. and Sejnoha, J. (2013), "Modeling of soil structure interaction during tunnel excavation: An engineering approach", Adv. Eng. Softw., 62-63, 51-60. https://doi:10.1016/j.advengsoft.2013.04.011.
  6. Jiang, B.S., Feng, Q., Wang, T. and Liu, Z.Q. (2011), "Mechanical analysis of closed type yieldable steel support", Rock Soil Mech., 32, 1620-1624.
  7. Jiao, Y.Y., Song, L., Wang, X.Z. and Adoko, A.C. (2013), "Improvement of the U-shaped steel sets for supporting the roadways in loose thick coal seam", Int. J. Rock Mech. Mining Sci., 60, 19-25, https://doi:10.1016/j.ijrmms.2012.12.038.
  8. Kala, Z. (2015), "Reliability analysis of the lateral torsional buckling resistance and the ultimate limit state of steel beams with random imperfections", J. Civil Eng. Manage., 21(7), 902-911. https://doi:10.3846/13923730.2014.971130.
  9. Kim, J.S., Kim, M.K. and Jung, S.D. (2015), "Two-dimensional numerical tunnel model using a winkler-based beam element and its application into tunnel monitoring systems", Cluster Comput, 18, 707-719, https://doi:10.1007/s10586-014-0418-4.
  10. Koubova, L., Janas, P. and Krejsa, M. (2016), "Nonlinear solution of steel arch supports", Key Eng. Mater., 716, 119-122. https://doi:10.4028/www.scientific.net/KEM.713.119.
  11. Koubova, L., Janas, P., Markopoulos, A. and Krejsa, M. (2019), "Nonlinear analyses of steel beams and arches using virtual unit moments and effective rigidity", Steel Compos. Struct., 33(5), 755-765, https://doi.org/10.12989/scs.2019.33.5.755.
  12. Krejsa, M. and Kralik, J. (2015), "Probabilistic computational methods in structural failure analysis", J. Multiscale Modelling, 06(03), 1-5, https://doi:10.1142/S1756973715500067.
  13. Lojen, G., Mayer, J., Boncina, T. and Zupanic, F. (2020), "Single-step heat treatment for the restoration of mechanical properties of cold-strained mining support steel 31Mn4", Strojniski vestnik - Journal of Mechanical Engineering, 66(12), 687-696, https://doi.org/10.5545/sv-jme.2020.6818.
  14. Nikkhah, M., Mousavi, S.S., Zare, S. and Khademhosseini, O. (2017), "Evaluation of structural analysis of tunnel segmental lining using beam-spring method and force-method (case study: Chamshir water conveyance tunnel)", J. Mining Environ., 8, 111-130, https://doi:10.22044/jme.2016.573.
  15. Odrobinak, J., Farbak, M., Chromcak, J., Kortis, J. and Gocal, J. (2020), "Real geometrical imperfection of bow-string arches - measurement and global analysis", Appl. Sci., 10(13), 1-11, https://doi.org/10.3390/app10134530.
  16. Pi, Y.L. and Bradford, M.A. (2010), "Effects of prebuckling analyses on determining buckling loads of pin-ended circular arches", Mech. Res. Commun., 37, 545-553, https://doi:10.1016/j.mechrescom.2010.07.016.
  17. Podjadtke, R., Witthaus, H. and J. Breedlove, J. (2009), "Development in steel roadway support - a track record", Proceedings 27th International Conference on Ground Control in Mining, Morgantown, Australia, 358-365.
  18. Rodrigues, R. and Diaz-Aguado, M.B. (2013), "Deduction and use of an analytical expression for the characteristic curve of a support based on yielding steel ribs", Tunnelling Underg. Space Technol., 33, 159-170, https://doi:10.1016/j.tust.2012.07.006.29.
  19. Silva, J.L., Deus, L.R.R.M., Lemes, I.J.M. and Silveira, R.A.M. (2021), "Plastic analysis of steel arches and framed structures with various cross sections", Steel Compos. Struct., 38(3), 257-270, https://doi.org/10.12989/scs.2021.38.3.257.
  20. Wang, P., Jiang, M., Chen, H., Jin, F., Zhou, J., Zheng, Q. and Fan, H. (2017), "Load carrying capacity of CFRP retrofitted broken concrete arch", Steel Compos. Struct., 23(2), 187-194. https://doi.org/10.12989/SCS.2017.23.2.187.
  21. Zhao, Y., Liu, N., Zheng, X. and Zhang, N. (2015), "Mechanical model for controlling floor heavy in deep roadways with u-shaped steel closed support", Int. J. Mining Sci. Technol., 25, 713-720, https://doi:10.1016/j.ijmst.2015.07.003.