DOI QR코드

DOI QR Code

Comparison of Void Content between Cyldrical Concrete Specimen and Concrete Core Specimen Using ASTM C 642 Test Procedure

ASTM C 642 시험방법을 이용한 구조체 코어공시체와 원주형 공시체의 공극률 비교 평가

  • Son, Joeng Jin (Architectural and Fire Protection Engineering, Pukyong National University) ;
  • Kim, Ji-Hyun (Multidisciplinary Infra-technoplogy Research Laboratory, Pukyong National University) ;
  • Chung, Chul-Woo (Architectural and Fire Protection Engineering, Pukyong National University)
  • Received : 2022.10.28
  • Accepted : 2022.11.17
  • Published : 2022.12.20

Abstract

Recently, construction accidents have occurred due to illegal water addition and insufficient quality control at domestic construction sites. In this study, the void content test method proposed in ASTM C 642 was used to provide a reference guideline for evaluation on the quality control status of cast-in-place structural concrete. For this purpose, simulated structural concrete for coring purpose was prepared in addition to the concrete cylindrical specimens with the same formulation, and the changes in compressive strength, elastic modulus, and void content related to coring were evaluated. According to experimental results, the compressive strength and modulus of elasticity were reduced by coring, which was associated with the generation of microcracks during coring. With respect to void content, the difference in void content between the cylindrical specimen and the cored specimen was up to 1.69%. If this value is used as a correction factor, it is possible to estimate the real void content of the cast-in-place structural concrete. By comparing this with the void content obtained from cylindrical concrete specimens, it is possible to evaluate the quality control status and amount of illegal water addition on the structural concrete.

최근 국내외 건설 현장에서 불법 가수 및 품질관리 미흡으로 인한 건설재해가 발생되고 있다. 본 연구에서는 현장타설 구조체 콘크리트의 품질관리 상태 및 시공단계에서의 임의가수량 판정을 위한 기준점으로 활용하기 위해, ASTM C 642에서 제안한 공극률 시험방법을 도입하고자 하였다. 이를 위해 코어링 대상의 모사 구조체 콘크리트를 타설하고, 같은 배합을 가지는 콘크리트 원주형 공시체를 함께 제작하여, 코어링 도중 발생한 공극률의 증가 수준에 대한 기초자료를 확보하고자 하였다. 압축강도 및 탄성계수는 코어링을 진행한 시편에서 낮게 나타났는데, 이는 코어링 도중 발생한 미세균열의 영향으로 판단된다. 공극률 측정 결과 각 시편간의 데이터 편차는 1% 미만으로 매우 정확한 값을 도출하였으며, 원주형 공시체와 코어링된 공시체 사이의 공극률 차이는 최대 1.69%로 확인되었다. 이 값을 보정치로 활용하면, 현장 콘크리트와 원주형 콘크리트 사이의 실공극률 추산이 가능하며, 이의 상호 비교를 통해 현장 구조체 콘크리트의 품질관리 상태 및 임의가수량의 판단이 가능할 것으로 확인되었다.

Keywords

Acknowledgement

This work was supported by the Energy R&D Program of the Korea Institute of Energy Technology Evaluation and Planning(KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea(No. 20217910100100).

References

  1. Industrial accident occurrence status in 2022 [Internet]. Sejong (Korea): Korea Occupational Safety and Health Agency. 2022 Jun. Available from: https://www.moel.go.kr/skin/doc.html?fn=20220830180521dcb111e8b76f4c2ea819c6c743df0c13.hwp&rs=/viewer/BBS/2022/
  2. Park NH, Yeo OK, Hwang YJ, Kin HJ, Choi JH, Choi GY, Ahn YC, Lee JS, Kim HY, Lee YH, Lee DL. In-depth Analysis for the Investigation System of Collapse Incidents of Foreign Structures Ministry of Public Administration and Security. Ulsan (Korea): National Disaster Management Research Institute; 2019 Dec. 253 p. Grant No.: 11-1741056-000208-01.
  3. Park SB. The problems and quality management of concrete materials. Magazine of the Korea Concrete Institute. 2002 May;14(3):10-5.
  4. Cho HB, Kim HY, Lee YD, Jung SJ. Effect of maintaining time of formwork on strength and dry shrinkage of mock-up concrete in cold weather condition. Journal of the Architectural Institute of Korea Structure & Construction. 2013 Jul;29(7):109-16. https://doi.org/10.5659/JAIK_SC.2013.29.7.109
  5. Tattersall GH. Workability and quality control of concrete. 1st ed. London: CRC Press; 1991. 272 p. https://doi.org/10.1201/9781482267006
  6. Ministry of Land, Infrastructure and Transport (Central Building Accident Investigation Committee). Investigation report on the collapse of demolition construction in gwangju. Sejong (Korea): Ministry of Land, Infrastructure and Transport; 2021 Aug. 91 p.
  7. Cho HD. Formwork QC Status During the Process of Concrete Work. Journal of the Architectural Institute of Korea. 2022 Apr;38(4):229-35. https://doi.org/10.5659/JAIK.2022.38.4.229
  8. Kim JH, Choi GJ, Park SK, Shin YS, Kim BJ. Comparison of the perception of each participant on quality control factor of form work. Journal of the Korea Academia-Industrial cooperation Society. 2021 Apr;22(4):520-8. https://doi.org/10.5762/KAIS.2021.22.4.520
  9. Ministry of Land, Infrastructure and Transport. Standard Specification Reinforced Concret Work (Korea). Ministry of Land, Infrastructure and Transport; 2022. 29 p.
  10. Korea Concrete Institute. Specification of Korea Concrete Institute. 1st ed. Seoul (Korea): Korea Concrete Institute; c2010.Chapter 8, KCI-RM101 Standard Test Method to Measure Rapidly Unit water of Fresh Concrete; p. 229-36.
  11. Park JM, RA JM, KIM JM, Kim YR. Characteristics of temperature and compressive strength of strength management specimen. Proceedings of the Korea Concrete Institute. 2022 May 11-13; Jeju, Korea. Seoul (Korea): The Korea Concrete Institute; 2022. p. 487-88.
  12. Lau KT, Zhou LM. Mechanical performance of composite-strengthened concrete structures. Composites Part B: Engineering. 2001 Sep;32(1):21-31.https://doi.org/10.1016/S1359-8368(00)00043-3
  13. ASTM C457/C457M-16. Standard Test Method for Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete. ASTM International. 2017 Apr;04(02):1-18. https://doi.org/10.1520/C0457_C0457M-16
  14. Fahy MP, Guccione M J. Estimating strength of sandstone using petrographic thin-section data. Environmental & Engineering Geoscience. 1979;xvi(4):467-85. https://doi.org/10.2113/gseegeosci.xvi.4.467
  15. ASTM C642-97. Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International. 2022 Jan;04(02):1-3. https://doi.org/10.1520/C0642-97
  16. Neville AM . Properties of concrete. 4th ed. London: Longman; 1995. 846 p.
  17. Jo SD, Kwan SH, Kim CY, Park YS. Effect of damage caused by extracting cores on compressive strength of concrete. Journal of the Korea Concrete Institute. 2019 Aug;31(4):397-405. https://doi.org/10.4334/JKCI.2019.31.4.397
  18. Park SK, Choi W, Oh KJ. Various testing condition affecting measured compressive strength of concrete core. Journal of Korea Concrete Institute. 2001 Aug;13(4):76-83. https://doi.org/10.22636/MKCI.2001.13.4.76
  19. KCS 14 20 00, Standard Specification Reinforced of General Concrete. Osan (Korea): Korea Concrete Institute; 2022. p. 1-65.