References
- Bai, X.D., Cheng, W.C., Ong, D.E.L. and Ge Li. (2021), "Evaluation of geological conditions and clogging of tunneling using machine learning", Geomech. Eng., 25(1), 59-73. https://doi.org/10.12989/gae.2021.25.1.059.
- Choobbasti, A., Farrokhzad, F. and Barari, A. (2009), "Prediction of slope stability using artificial neural network (case study: Noabad, Mazandaran, Iran)", Arabian J. Geosci., 2(4), 311-319. https://doi.org/10.1007/S12517-009-0035-3.
- Das, S.K., Biswal, R.K., Sivakugan, N. and Das, B. (2011), "Classification of slopes and prediction of factor of safety using differential evolution neural networks", Environ. Earth Sci., 64(1), 201-210. https://doi.org/10.1007/S12665-010-0839-1.
- Erzin, Y. and Cetin, T. (2013), "The prediction of the critical factor of safety of homogeneous finite slopes using neural networks and multiple regressions", Comput. Geosci., 51, 305-313. https://doi.org/10.1016/j.cageo.2012.09.003.
- Feng, X. (2000), "Introduction of intelligent rock mechanics", Science Press, Beijing, China.
- Feng, X., Li, S., Yuan, C., Zeng, P. and Sun Y. (2018), "Prediction of slope stability using naive bayes classifier", KSCE J. Civil Eng., 22, 941-950. https://doi.org/10.1007/s12205-018-1337-3.
- Glowacz, A. (2021a), "Fault diagnosis of electric impact drills using thermal imaging", Measurement, 171, 108815. https://doi.org/10.1016/j.measurement.2020.108815.
- Glowacz, A. (2021b), "Ventilation diagnosis of angle grinder using thermal imaging", Sensors, 21(8), 2853. https://doi.org/10.3390/s21082853.
- Gordan, B., Jahed Armaghani, D., Hajihassani, M. and Monjezi, M. (2016), "Prediction of seismic slope stability through combination of particle swarm optimization and neural network", Eng. Comput., 32(1), 85-97. https://doi.org/10.1007/s00366-015-0400-7.
- Hoang, N.D. and Pham, A.D. (2016), "Hybrid artificial intelligence approach based on metaheuristic and machine learning for slope stability assessment: A multinational data analysis", Exp. Syst. Appl., 46, 60-68. https://doi.org/10.1016/j.eswa.2015.10.020.
- Huang, H., Guo, M., Zhang, W. and Huang, M. (2022), "Seismic behavior of strengthened RC columns under combined loadings", J. Bridge Eng., 27(6). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001871.
- Huang, Z., Cui, J. and Liu, H. (2004), "Chaotic neural network method for slope stability prediction", Chinese J. Rock Mech. Eng., 23(22). http://www.rockmech.org/EN/Y2004/V23/I22/3808.
- Khajehzadeh, M., Taha, M.R., El-Shafie, A. and Eslami, M. (2012), "A modified gravitational search algorithm for slope stability analysis", Eng. Appl. Artif. Intell., 25(8), 1589-1597. https://doi.org/10.1016/j.engappai.2012.01.011.
- Khishe, M. and Mosavi, M.R. (2019), "Improved whale trainer for sonar datasets classification using neural network", Appl. Acoust., 154, 176-192. https://doi.org/10.1016/j.apacoust.2019.05.006.
- Khishe, M. and Mosavi, M.R. (2020), "Chimp optimization algorithm", Exp. Syst. Appl., 149, 113338. https://doi.org/10.1016/j.eswa.2020.113338.
- Kolapo, P., Oniyide, G.O., Said, K.O., Lawal, A.I., Onifade, M. and Munemo, P. (2022), "An overview of slope failure in mining operations", Mining, 2(2), 350-384. https://doi.org/10.3390/mining2020019.
- Li, Q., Song, D., Yuan, C. and Nie, W. (2022), "An image recognition method for the deformation area of open-pit rock slopes under variable rainfall", Measurement, 188, 110544. https://doi.org/10.1016/j.measurement.2021.110544.
- Li, S., Zhao, H.B. Ru, Z. (2013), "Slope reliability analysis by updated support vector machine and Monte Carlo simulation", Nat. Hazards, 65(1), 707-722. https://doi.org/10.1007/s11069-012-0396-x.
- Li, X. (2004), "Comparative studies of artificial neural networks and adaptive Neuro-Fuzzy inference system based approach for the circular sliding slopes stability analysis", Master Thesis, University of South China, Hengyang, Hunan, China.
- Lin, Y., Zhou, K. and Li, J. (2018), "Prediction of slope stability using four supervised learning methods", IEEE Access, 6, 31169-31179. https://doi.org/10.1109/ACCESS.2018.2843787.
- Liu, J., Jiang, Y., Zhang, Y. and Sakaguchi, O. (2021a), "Influence of different combinations of measurement while drilling parameters by artificial neural network on estimation of tunnel support patterns", Geomech. Eng., 25(6), 439-454. https://doi.org/10.12989/gae.2021.25.6.439.
- Liu, L.L., Yang, C. and Wang, X.M. (2021b), "Landslide susceptibility assessment using feature selection-based machine learning models", Geomech. Eng., 25(1), 1-16. https://doi.org/10.12989/gae.2021.25.1.001.
- Liu, Z., Shao, J., Xu, W., Chen, H. and Zhang, Y. (2014), "An extreme learning machine approach for slope stability evaluation and prediction", Nat. Hazards, 73(2), 787-804. https://doi.org/10.1007/s11069-014-1106-7.
- Lu, P. and Rosenbaum, M.S. (2003), "Artificial neural networks and grey systems for the prediction of slope stability", Nat. Hazards, 30(3), 383-398. https://doi.org/10.1023/B:NHAZ.0000007168.00673.27.
- Lu, S., Ban, Y., Zhang, X., Yang, B., Liu, S., Yin, L. and Zheng, W. (2022), "Adaptive control of time delay teleoperation system with uncertain dynamics", Front. Neurorobotics, 16. https://doi.org/10.3389/fnbot.2022.928863.
- Luat, N.V., Lee, K. and Duc-Kien, Thai. (2020), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils", Geomech. Eng., 20(5), https://doi.org/10.12989/gae.2020.20.5.385.
- Mahmoodzadeh, A., Mohammadi, M., Abdulhamid, S., Ibrahim, H., Hama Ali, H. and Salim, S. (2021), "Dynamic reduction of time and cost uncertainties in tunneling projects", Tunn. Undergr. Sp. Tech., 109, 103774. https://doi.org/10.1016/j.tust.2020.103774.
- Mahmoodzadeh, A., Mohammadi, M., Salim, S., Hama Ali, H., Ibrahim, H., Abdulhamid, S., Nejati, H.R. and Rashidi, S. (2022a), "Machine learning techniques to predict rock strength parameters", Rock Mech. Rock Eng., 55, 1721-1741. https://doi.org/10.1007/s00603-021-02747-x.
- Mahmoodzadeh, A., Nejati, H.R., Mohammadi, M., Ibrahim, H., Khishe, M., Rashidi, S. and Hama Ali, H. (2022b), "Prediction of Mode-I rock fracture toughness using support vector regression with metaheuristic optimization algorithms", Eng. Fract. Mech., 264, 108334. https://doi.org/10.1016/j.engfracmech.2022.108334.
- Mahmoodzadeh, A., Rashidi, S., Mohammed, A., Hama Ali, H. and Ibrahim, H. (2022), "Machine learning approaches to enable resource forecasting process of road tunnels construction", Communication Engineering and Computer Science, North America, mar. 2022. https://conferences.cihanuniversity.edu.iq/index.php/COCOS/22/paper/view/718.
- Rukhaiyar, S., Alam, M. and Samadhiya, N. (2017), "A PSO-ANN hybrid model for predicting factor of safety of slope", Int. J. Geotech. Eng., 12(6), 556-566. https://doi.org/10.1080/19386362.2017.1305652.
- Samui, P. (2008), "Slope stability analysis: A support vector machine approach", Environ. Geology, 56(2), 255-267. https://doi.org/10.1007/s00254-007-1161-4.
- Suman, S., Khan, S., Das, S. and Chand, S. (2016), "Slope stability analysis using artificial intelligence techniques", Nat. Hazards, 84(2), 727-748. https://doi.org/10.1007/s11069-016-2454-2.
- Suman, S., Khan, S.Z., Das, S.K. and Chand SK. (2016), "Slope stability analysis using artificial intelligence techniques", Nat. Hazards, 84, 727-748. https://doi.org/10.1007/s11069-016-2454-2.
- Verma, A., Singh, T., Chauhan, N.K. and Sarkar, K. (2016), "A hybrid FEM-ANN approach for slope instability prediction", J. Inst. Engineers (India): Series A, 97(3), 171-180. https://doi.org/10.1007/s40030-016-0168-9.
- Wang, G., Zhao, B., Wu, B., Zhang, C. and Liu, W. (2022a), "Intelligent prediction of slope stability based on visual exploratory data analysis of 77 in situ cases", Int. J. Min. Sci. Tech., https://doi.org/10.1016/j.ijmst.2022.07.002
- Wang, J., Tian, J., Zhang, X., Yang, B., Liu, S., Yin, L. and Zheng, W. (2022b), "Control of time delay force feedback teleoperation system with finite time convergence", Front. Neurorobotics, 16. https://doi.org/10.3389/fnbot.2022.877069.
- Xi, Y., Jiang, W., Wei, K., Hong, T., Cheng, T. and Gong, S. (2022), "Wideband RCS reduction of microstrip antenna array using coding metasurface with low Q resonators and fast optimization method", IEEE Antennas Wireless Propagation Lett., 21(4), 656-660. https://doi.org/10.1109/LAWP.2021.3138241.
- Xiang, G., Yin, D., Cao, C. and Yuan, L. (2021), "Application of artificial neural network for prediction of flow ability of soft soil subjected to vibrations", Geomech. Eng., 25(5), 395-403. https://doi.org/10.12989/gae.2021.25.5.395.
- Xie, W., Li, X., Jian, W., Yang, Y., Liu, H., Robledo, L.F. and Nie, W. (2021a), "A novel hybrid method for landslide susceptibility mapping-based geodetector and machine learning cluster: A case of Xiaojin county, China", ISPRS Int. J. Geo-Inform., 10(2), 93. https://doi.org/10.3390/ijgi10020093.
- Xie, W., Nie, W., Saffari, P., Robledo, L.F., Descote, P.Y. and Jian, W. (2021b), "Landslide hazard assessment based on Bayesian optimization-support vector machine in Nanping City, China", Nat. Hazards, 109(1), 931-948. https://doi.org/10.1007/s11069-021-04862-y.
- Xu, J., Park, S.H., Zhang, X. and Hu, J. (2022a), "The improvement of road driving safety guided by visual inattentional blindness", IEEE T. Intell. Transp. Syst., 23(6), 4972-4981. https://doi.org/10.1109/TITS.2020.3044927.
- Xu, J., Zhou, L., Li, Y., Ding, J., Wang, S. and Cheng, W.C. (2022b), "Experimental study on uniaxial compression behavior of fissured loess before and after vibration", Int. J. Geomech., 22(2). https://doi.org/10.1061/(ASCE)GM.1943-5622.0002259.
- Xue, X. (2017), "Prediction of slope stability based on hybrid PSO and LSSVM", J. Comput. Civil Eng., 31(1). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000607.
- Xue, X., Yang, X. and Chen, X. (2014), "Application of a support vector machine for prediction of slope stability.", Sci. China Technol. Sci., 57, 2379-2386. https://doi.org/10.1007/s11431-014-5699-6.
- Zhang, C. and Abedini, M. (2021), "Time-history blast response and failure mechanism of RC columns using Lagrangian formulation", Structures, 34, 3087-3098. https://doi.org/10.1016/j.istruc.2021.09.073.
- Zhao, H., Yin, S. and Ru, Z. (2012), "Relevance vector machine applied to slope stability analysis", Int. J. Numer. Anal. Method. Geomech., 36(5), 643-652. https://doi.org/10.1002/nag.1037.
- Zhao, H.B. (2008), "Slope reliability analysis using a support vector machine", Comput. Geotech., 35(3), 459-467. https://doi.org/10.1016/j.compgeo.2007.08.002.
- Zhou, J., Li, E., Yang, S., Wang, M., Shi, X., Yao, S. and Mitri, H.S. (2019), "Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories", Safety Sci., 118, 505-518. https://doi.org/10.1016/j.ssci.2019.05.046.
- Zhou, J., Li, X. and Mitri, H.S. (2016), "Classification of rockburst in underground projects: Comparison of ten supervised learning methods", J. Comput. Civil Eng., 30(5). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000553.