DOI QR코드

DOI QR Code

Assessment of seismic stability of finite slope in c-ϕ soils - a plasticity approach

  • Shibsankar, Nandi (Department of Civil Engineering, Indian Institute of Technology Kanpur) ;
  • G., Santhoshkumar (School of Infrastructure, Indian Institute of Technology Bhubaneswar) ;
  • Priyanka, Ghosh (Department of Civil Engineering, Indian Institute of Technology Kanpur)
  • Received : 2021.09.09
  • Accepted : 2022.09.25
  • Published : 2022.12.10

Abstract

A forecast of slope behavior during catastrophic events, such as earthquakes is crucial to recognize the risk of slope failure. This paper endeavors to eliminate the significant supposition of predefined slip surfaces in the slope stability analysis, which questions the relevance of simple conventional methods under seismic conditions. To overcome such limitations, a methodology dependent on the slip line hypothesis, which permits an automatic generation of slip surfaces, is embraced to trace the extreme slope face under static and seismic conditions. The effect of earthquakes is considered using the pseudo-static approach. The current outcomes developed from a parametric study endorse a non-linear slope surface as the extreme profile, which is in accordance with the geomorphological aspect of slopes. The proposed methodology is compared with the finite element limit analysis to ensure credibility. Through the design charts obtained from the current investigation, the stability of slopes can be assessed under seismic conditions. It can be observed that the extreme slope profile demands a flat configuration to endure the condition of the limiting equilibrium at a higher level of seismicity. However, a concurrent enhancement in the shear strength of the slope medium suppresses this tendency by offering greater resistance to the seismic inertial forces induced in the medium. Unlike the traditional linear slopes, the extreme slope profiles mostly exhibit a steeper layout over a significant part of the slope height, thus ensuring a more optimized solution to the slope stability problem. Further, the susceptibility of the Longnan slope failure in the Huining-Wudu seismic belt is predicted using the current plasticity approach, which is found to be in close agreement with a case study reported in the literature. Finally, the concept of equivalent single or multi-tiered planar slopes is explored through an example problem, which exhibits the appropriateness of the proposed non-linear slope geometry under actual field conditions.

Keywords

Acknowledgement

The first author acknowledges the Ministry of Education, Government of India, for Prime Minister's Research Fellowship grant.

References

  1. Abe, K., Nakamura, S., Nakamura, H. and Shiomi, K. (2017), "Numerical study on dynamic behavior of slope models including weak layers from deformation to failure using material point method", Soils Found., 57(2), 155-175. https://doi.org/10.1016/j.sandf.2017.03.001.
  2. Bishop, A.W. (1955), "The use of the slip circle in the stability analysis of slopes", Geotechnique, 5(1), 7-17. https://doi.org/10.1680/geot.1955.5.1.7.
  3. Cheng, Y.M. and Au, S.K. (2005), "Solution of the bearing capacity problem by the slip line method", Can. Geotech. J., 42(4), 1232-1241. https://doi.org/10.1139/t05-037.
  4. Cheng, Y.M., Li, L. and Chi, S.C. (2007), "Performance studies on six heuristic global optimization methods in the location of critical slip surface", Comput. Geotech., 34(6), 462-484. https://doi.org/10.1016/j.compgeo.2007.01.004.
  5. Choudhury, D., Basu, S. and Bray, J.D. (2007), "Behaviour of slopes under static and seismic conditions by limit equilibrium method", Proceedings of Geo-Denver 2007: New Peaks in Geotechnics, Denver, Colorado, February.
  6. Cui, H., Ji, J., Song, J. and Huang, W. (2022), "Limit state linebased seismic stability charts for homogeneous earth slopes", Comput. Geotech., 146, 104749. https://doi.org/10.1016/j.compgeo.2022.104749.
  7. Erzin, Y. and Cetin, T. (2014), "The prediction of the critical factor of safety of homogeneous finite slopes subjected to earthquake forces using neural networks and multiple regressions", Geomech. Eng., 6(1), 1-15. https://doi.org/10.12989/gae.2014.6.1.001.
  8. Eurocode 8 (2004), Design of structures for earthquake resistance. Part 5: Foundations, retaining structures and geotechnical aspects, European Committee for Standardization; Brussels, Belgium.
  9. Fellenius, W. (1936), "Calculation of the stability of earth dams", Proceedings of Transactions of the 2nd Congress on Large Dams, International Commission on Large Dams of the World Power Conference, Washington, DC, December.
  10. Florkiewicz, A. and Kubzdela, A. (2013), "Factor of safety in limit analysis of slopes", Geomech. Eng., 5(5), 485-497. https://doi.org/10.12989/gae.2013.5.5.485.
  11. Ghanbari, A., Khalilpasha, A., Sabermahani, M. and Heydari, B. (2013), "An analytical technique for estimation of seismic displacements in reinforced slopes based on horizontal slices method (HSM)", Geomech. Eng., 5(2), 143-164. https://doi.org/10.12989/gae.2013.5.2.143.
  12. Graham, J. (1968), "Plane plastic failure in cohesionless soils", Geotechnique, 18(3), 301-316. https://doi.org/10.1680/geot.1968.18.3.301.
  13. Gray, D.H. (2013), "Influence of slope morphology on the stability of earthen slopes", Proceedings of the Geo-Congress 2013: Stability and Performance of Slopes and Embankments, San Diego, California, March.
  14. Greco, V.R. (2008), "Discussion of seismic active earth pressure behind a nonvertical retaining wall using pseudo-dynamic analysis", Can. Geotech. J., 45(12), 1795-1797. https://doi.org/10.1139/T08-099.
  15. Griffiths, D.V. and Lane, P.A. (1999), "Slope stability analysis by finite elements", Geotechnique, 49(3), 387-403. https://doi.org/10.1680/geot.1999.49.3.387.
  16. Hill, R. (1950), The Mathematical Theory of Plasticity, Oxford University Press, Oxford, UK.
  17. Huang, C.C. (2019), "Experimental verification of seismic bearing capacity of near-slope footings using shaking table tests", J. Earthq. Eng., https://doi.org/10.1080/13632469.2019.1665148.
  18. IS 1893 (2016), Criteria for earthquake resistant design of structures. Part 1: General provisions and buildings, Bureau of Indian Standards; New Delhi, India.
  19. Jeldes, I.A., Drumm, E.C. and Yoder, D.C. (2015), "Design of stable concave slopes for reduced sediment delivery", J Geotech. Geoenviron. Eng., 141(2), 04014093-1-10. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001211.
  20. Keshavarz, A. and Kumar, J. (2017), "Bearing capacity computation for a ring foundation using the stress characteristics method", Comput. Geotech., 89, 33-42. https://doi.org/10.1016/j.compgeo.2017.04.006.
  21. Khosravi, M., Leshchinsky, D., Meehan, C.L. and Khosravi, A. (2013), "Stability analysis of seismically loaded slopes using finite element techniques", Proceedings of the Geo-Congress 2013: Stability and Performance of Slopes and Embankments, San Diego, California, March.
  22. Kolathayar, S. and Ghosh, P. (2009), "Seismic active earth pressure on walls with bilinear backface using pseudo-dynamic approach", Comput. Geotech., 36(7), 1229-1236. https://doi.org/10.1016/j.compgeo.2009.05.015.
  23. Krabbenhoft, K., Lyamin, A. and Krabbenhoft, J. (2015), Optum Computational Engineering (OptumG2). https://optumce.com
  24. Kumar, J. and Ghosh, P. (2007), "Ultimate bearing capacity of two interfering rough strip footings", Int. J. Geomech., 7(1), 53-62. https://doi.org/10.1061/(ASCE)1532-3641(2007)7:1(53).
  25. Lee, M.G., Ha, J.G., Jo, S.B., Park, H.J. and Kim, D.S. (2017), "Assessment of horizontal seismic coefficient for gravity quay walls by centrifuge tests", Geotechnique Lett., 7(2), 211-217. https://doi.org/10.1680/jgele.17.00005.
  26. Leshchinsky, D., Ebrahimi, S., Vahedifard, F. and Zhu, F. (2012), "Extension of Mononobe-Okabe approach to unstable slopes", Soils Found., 52(2), 239-256. https://doi.org/10.1016/j.sandf.2012.02.004.
  27. Li, C., Jiang, P. and Zhou, A. (2019), "Rigorous solution of slope stability under seismic action", Comput. Geotech., 109, 99-107. https://doi.org/10.1016/j.compgeo.2019.01.018.
  28. Li, S., Shangguan, Z., Duan, H., Liu, Y. and Luan, M. (2009), "Searching for critical failure surface in slope stability analysis by using hybrid genetic algorithm", Geomech. Eng., 1(1), 85-96. https://doi.org/10.12989/gae.2009.1.1.085.
  29. Li, X. (2007), "Finite element analysis of slope stability using a nonlinear failure criterion", Comput. Geotech., 34(3), 127-136. https://doi.org/10.1016/j.compgeo.2006.11.005.
  30. Lu, L., Wang, Z., Huang, X., Zheng, B. and Arai, K. (2014), "Dynamic and static combination analysis method of slope stability analysis during earthquake", Math. Probl. Eng., Article ID 573962. https://doi.org/10.1155/2014/573962.
  31. Majumdar, D.K. (1971), "Stability of soil slopes under horizontal earthquake force", Geotechnique, 21(1), 84-88. https://doi.org/10.1680/geot.1971.21.1.84.
  32. Makdisi, F.I. and Seed, H.B. (1978), "Simplified procedure for estimating dam and embankment earthquake-induced deformations", J. Geotech. Eng. Div., 104(7), 849-867. https://doi.org/10.1061/AJGEB6.0000668.
  33. Mononobe, N. and Matsuo, H. (1929), "On the determination of earth pressures during earthquakes", Proceedings of the World Engineering Conference, Tokyo.
  34. Nandi, S., Santhoshkumar, G. and Ghosh, P. (2021a), "Determination of critical slope face in c-ϕ soil under seismic condition using method of stress characteristics", Int. J. Geomech., 21(4), 04021031-1-13. https://https://doi.org/10.1061/(ASCE)GM.1943-5622.0001976.
  35. Nandi, S., Santhoshkumar, G. and Ghosh, P. (2021b), "Development of limiting soil slope profile under seismic condition using slip line theory", Acta Geotechnica, 16(11), 3517-3531. https://doi.org/10.1007/s11440-021-01251-4.
  36. Nasiri, F., Javdanian, H. and Heidari, A. (2020), "Seismic response analysis of embankment dams under decomposed earthquakes", Geomech. Eng., 21(1), 35-51. https://doi.org/10.12989/gae.2020.21.1.035.
  37. Newmark, N.M. (1965), "Effects of earthquakes on dams and embankments", Geotechnique, 15(2), 139-160. https://doi.org/10.1680/geot.1965.15.2.139.
  38. Okabe, S. (1926), "General theory of earth pressures", J. Japan Soc. Civ. Eng., 12, 1277-1323.
  39. Peng, M.X. and Chen, J. (2013), "Slip-line solution to active earth pressure on retaining walls", Geotechnique, 63(12), 1008-1019. https://doi.org/10.1680/geot.11.P.135.
  40. Prisco, C.di., Pastor, M. and Pisano, F. (2012), "Shear wave propagation along infinite slopes: a theoretically based numerical study", Int. J. Numer. Anal. Meth. Geomech., 36(5), 619-642. https://doi.org/10.1002/nag.1020.
  41. Qian. Z.H. and Zou, J.F. (2022), "Three-dimensional rigorous upper-bound limit analysis of soil slopes subjected to variable seismic excitations", Comput. Geotech., 147, 104714. https://doi.org/10.1016/j.compgeo.2022.104714.
  42. Qin, C.-B. and Chian, S.C. (2018), "Kinematic analysis of seismic slope stability with a discretisation technique and pseudodynamic approach: a new perspective", Geotechnique, 68(6), 492-503. https://doi.org/10.1680/jgeot.16.P.200.
  43. Rieke-Zapp, D.H. and Nearing, M.A. (2005), "Slope shape effects on erosion: a laboratory study", Soil Sci. Soc. Am. J., 69(5), 1463-1471. https://doi.org/10.2136/sssaj2005.0015.
  44. Sahoo, P.P. and Shukla, S.K. (2019), "Taylor's slope stability chart for combined effects of horizontal and vertical seismic coefficients", Geotechnique, 69(4), 344-354. https://doi.org/10.1680/jgeot.17.P.222.
  45. Sarkar, S. and Chakraborty, M. (2019), "Pseudostatic slope stability analysis in two-layered soil by using variational method", Proceedings of the 7th International Conference on Earthquake Geotechnical Engineering, Rome, Italy, June.
  46. Sarma, S.K. (1973), "Stability analysis of embankments and slopes", Geotechnique, 23(3), 423-433. https://doi.org/10.1680/geot.1973.23.3.423.
  47. Schor, H.J. and Gray, D.H. (2007), Landforming: An Environmental Approach to Hillside Development, Mine Reclamation and Watershed Restoration, Wiley, Hoboken, NJ.
  48. Sokolovski, V.V. (1960), Statics of Soil Media, Butterworths Scientific Publications, London, UK.
  49. Su, Z. and Shao, L. (2021), "A three-dimensional slope stability analysis method based on finite element method stress analysis", Eng. Geol., 280(105910), 1-12. https://doi.org/10.1016/j.enggeo.2020.105910.
  50. Taylor, D.W. (1937), "Stability of earth slopes", J. Boston Soc. Civil Engineers, 24, 197-246.
  51. Terzaghi, K. (1950), Mechanisms of Landslides, Geological Society of America, Berkeley Volume.
  52. Terzi, N.U. and Selcuk, M.E. (2015), "Nonlinear dynamic behavior of Pamukcay earthfill dam", Geomech. Eng., 9(1), 83-100. https://doi.org/10.12989/gae.2015.9.1.083.
  53. Utili, S. and Nova, R. (2007), "On the optimal profile of a slope", Soils Found., 47(4), 717-729. https://doi.org/10.3208/sandf.47.717.
  54. Vahedifard, F., Shahrokhabadi, S. and Leshchinsky, D. (2016), "Optimal profile for concave slopes under static and seismic conditions", Can. Geotech. J., 53(9), 1522-1532. https://doi.org/10.1139/cgj-2016-0057.
  55. Veiskarami, M., Eslami, A. and Kumar, J. (2011), "End-bearing capacity of driven piles in sand using the stress characteristics method: analysis and implementation", Can. Geotech. J., 48(10), 1570-1586. https://doi.org/10.1139/t11-057.
  56. Wasowski, J., Keefer, D.K. and Lee, C.T. (2011), "Toward the next generation of research on earthquake-induced landslides: current issues and future challenges", Eng. Geol., 122(1-2), 1-8. https://doi.org/10.1016/j.enggeo.2011.06.001.
  57. Yang, X., Zhai, E., Wang, Y. and Hu, Z. (2018), "A comparative study of pseudo-static slope stability analysis using different design codes", Water Sci. Eng., 11(4), 310-317. https://doi.org/10.1016/j.wse.2018.12.003.
  58. Yuan, R., Deng, Q., Cunningham, D., Han, Z., Zhang, D. and Zhang, B. (2016), "Newmark displacement model for landslides induced by the 2013 Ms 7.0 Lushan earthquake, China", Front. Earth Sci., 10(4), 740-750. https://doi.org/10.1007/s11707-015-0547-y.
  59. Zhou, X.P. and Cheng, H, (2014), "Stability analysis of threedimensional seismic landslides using the rigorous limit equilibrium method", Eng. Geol., 174, 87-102. https://doi.org/10.1016/j.enggeo.2014.03.009.