DOI QR코드

DOI QR Code

Plane-wave Full Waveform Inversion Using Distributed Acoustic Sensing Data in an Elastic Medium

탄성매질에서의 분포형 음향 센싱 자료를 활용한 평면파 전파형역산

  • Seoje, Jeong (Department of Ocean Energy & Resources Engineering, Korea Maritime & Ocean University) ;
  • Wookeen, Chung (Department of Ocean Energy & Resources Engineering, Korea Maritime & Ocean University) ;
  • Sungryul, Shin (Department of Ocean Energy & Resources Engineering, Korea Maritime & Ocean University) ;
  • Sumin, Kim (Department of Convergence Study on the Ocean Science & Technology, Ocean Science & Technology (OST) School, Korea Maritime & Ocean University)
  • 정서제 (한국해양대학교 해양에너지자원공학과) ;
  • 정우근 (한국해양대학교 해양에너지자원공학과) ;
  • 신성렬 (한국해양대학교 해양에너지자원공학과) ;
  • 김수민 (한국해양대학교 해양과학기술융합학과)
  • Received : 2022.08.29
  • Accepted : 2022.11.17
  • Published : 2022.11.30

Abstract

Distributed acoustic sensing (DAS), an increasingly growing acquisition technique in the oil and gas exploration and seismology fields, has been used to record seismic signals using optical cables as receivers. With the development of imaging methods for DAS data, full waveform inversion (FWI) is been applied to DAS data to obtain high-resolution property models such as P- and S-velocity. However, because the DAS systems measure strain from the phase distortion between two points along optical cables, DAS data must be transformed from strain to particle velocity for FWI algorithms. In this study, a plane-wave FWI algorithm based on the relationship between strain and horizontal particle velocity in the plane-wave assumption is proposed to apply FWI to DAS data. Under the plane-wave assumption, strain equals the horizontal particle velocity, which is scaled by the velocity at the receiver position. This relationship was confirmed using a numerical experiment. Furthermore, 4-layer and modified Marmousi-2 velocity models were used to verify the applicability of the proposed FWI algorithm in various survey environments. The proposed FWI was implemented in land and marine survey environments and provided high-resolution P- and S-velocity models.

분포형 음향 센싱(distributed acoustic sensing, DAS)은 광섬유 케이블을 수신기로 활용하는 탐사기술로서, 석유탐사 및 지진분야에서 모니터링 목적으로 활발히 적용되고 있다. 최근에는 지하매질의 물성정보를 도출하기 위해 분포형 음향 센싱 자료를 활용한 전파형역산 연구가 수행되고 있다. 분포형 음향 센싱은 광섬유 케이블 상의 두 점 간의 위상 차이에 의한 변형률을 측정하기 때문에, 기존 전파형역산 알고리즘에 직접 활용하기 어렵다. 분포형 음향 센싱 자료를 전파형역산에 활용하기 위해, 본 연구에서는 평면파 가정에서의 변형률과 수평입자속도의 관계식을 이용한 평면파 전파형역산 알고리즘을 개발하였다. 수치실험을 통해 평면파 가정에서의 변형률과 입자속도 간의 관계식이 성립함을 확인하였다. 다양한 탐사환경에서 분포형 음향 센싱 자료에 대한 전파형역산의 적용 가능성을 확인하기 위해, 육상 및 해저면 탄성파 탐사 환경을 모사한 4층 및 수정된 Marmousi-2 속도모델을 이용하였다. 제안된 전파형역산을 통해 육상 및 해저면 탄성파 탐사 환경하에서 P파 및 S파 속도구조를 정확히 도출할 수 있었다.

Keywords

Acknowledgement

본 연구는 한국지질자원연구원 기본사업인 '해저탐사선 운항안정화 및 연근해 탐사기술 개발(22-3313-위탁1, GP2020-026)' 과제와 한국해양과학기술원의 지원을 받아 수행한 연구과제(Grant PEA0089)에서 수행되었습니다.

References

  1. Bakulin, A., Silvestrov, I., and Pevzner, R., 2020, Surface seismics with DAS: An emerging alternative to modern point-sensor acquisition, The Leading Edge, 39(11), 808-818. https://doi.org/10.1190/tle39110808.1
  2. Choi, S., Jun, H., Shin, S., and Chung, W., 2021, Evaluating accuracy of algorithms providing subsurface properties using full-reference image quality assessment, Geophys. and Geophys. Explor, 24(1), 6-19 (in Korean with English abstract). https://doi.org/10.7582/GGE.2021.24.1.006
  3. Claerbout, J. F., 1978, Snell waves, Stanford Exploration Project Report no. 15, 57-72. https://sepd8.sites.stanford.edu/publications/old-sep-reports/sep-15-1978
  4. Daley, T. M., Miller, D. E., Dodds, K., Cook, P., and Freifeld, B. M., 2016, Field testing of modular borehole monitoring with simultaneous distributed acoustic sensing and geophone vertical seismic profiles at Citronelle, Alabama, Geophys. Prospect, 64(5), 1318-1334. https://doi.org/10.1111/1365-2478.12324
  5. Duan, Y., Li, Y., Kryvohuz, M., Mateeva, A., and Chen, T, 2020, 3D salt-boundary imaging with transmitted waves in DAS VSP data acquired in salt, SEG Technical Program Expanded Abstracts, 370-374. http://dx.doi.org/10.1190/segam2020-3428055.1
  6. Eaid, M., Keating, S., and Innanen, K., 2020, Multiparameter seismic elastic full-waveform inversion with combined geophone and shaped fiber-optic cable data, Geophysics, 85(6), R537-R552. https://doi.org/10.1190/geo2020-0170.1
  7. Eaid, M., Keating, S., and Innanen, K., 2022, Combined elastic FWI of accelerometer and DAS VSP data from a CO2 sequestration test site in Newell County, Alberta, SEG Technical Program Expanded Abstracts, 852-856. https://doi.org/10.1190/image2022-3746014.1
  8. Egorov, A., Correa, J., Bona, A., Pevzner, R., Tertyshnikov, K., Glubokovskikh, S., Puzyrev, V., and Gurevich, B., 2018, Elastic full-waveform inversion of vertical seismic profile data acquired with distributed acoustic sensors, Geophysics, 83(3), R273-R281. https://doi.org/10.1190/geo2017-0718.1
  9. Graves, R. W., 1996, Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences, Bull.Seismol. Soc. Amer., 86(4), 1091-1106. https://api.semanticscholar.org/CorpusID:61123939 https://doi.org/10.1785/BSSA0860041091
  10. Harris, K., White, D., and Samson, C., 2017, Imaging the Aquistore reservoir after 36 kilotonnes of CO2 injection using distributed acoustic sensing, Geophysics, 82(6), M81-M96. https://doi.org/10.1190/geo2017-0174.1
  11. Ide, S., Araki, E., and Matsumoto, H., 2021, Very broadband strain-rate measurements along a submarine fiber-optic cable off Cape Muroto, Nankai subduction zone, Japan, Earth, Planets and Space, 73(1), 1-10. https://earth-planets-space.springeropen.com/articles/10.1186/s40623-021-01385-5
  12. Jiang, T., Zhan, G., Hance, T., Sugianto, S., Soulas, S., and Kjos, E., 2016, Valhall dual-well 3D DAS VSP field trial and imaging for active wells, SEG Technical Program Expanded Abstracts, 5582-5586. https://doi.org/10.1190/segam2016-13871754.1
  13. Komatitsch, D., and Martin, R., 2007, An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation, Geophysics, 72(5), SM155-SM167. https://doi.org/10.1190/1.2757586
  14. Kohn, D., De Nil, D., Kurzmann, A., Przebindowska, A., and Bohlen, T., 2012, On the influence of model parametrization in elastic full waveform tomography, Geophys. J. Int., 191(1), 325-345. https://doi.org/10.1111/j.1365-246X.2012.05633.x
  15. Kwon, T., Seol, S. J., and Byun, J., 2015, Efficient full-waveform inversion with normalized plane-wave data, Geophys. J. Int., 201(1), 53-60. https://doi.org/10.1093/gji/ggu498
  16. Lim Chen Ning, I., and Sava, P., 2018, Multicomponent distributed acoustic sensing: Concept and theory, Geophysics, 83(2), P1-P8. https://doi.org/10.1190/geo2017-0327.1
  17. Liu, Y., Teng, J., Xu, T., Badal, J., Liu, Q., and Zhou, B., 2017, Effects of conjugate gradient methods and step-length formulas on the multiscale full waveform inversion in time domain: numerical experiments, Pure Appl. Geophys., 174(5), 1983-2006. https://link.springer.com/article/10.1007/s00024-017-1512-3 Ma, X., Li, Z., Ke, P., Xu, S., Liang, G., and Wu, X., 2019,
  18. Research of step-length estimation methods for full waveform inversion in time domain, Explor. Geophys., 50(6), 583-599. https://doi.org/10.1080/08123985.2019.1641266
  19. Mateeva, A., Lopez, J., Potters, H., Mestayer, J., Cox, B., Kiyashchenko, D., Wills, P., Grandi, S., Hornman, K., Kuvshinov, B., Berlang, W., Yang, Z., and Detomo, R., 2014, Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling, Geophys. Prospect, 62(4), 679-692. https://doi.org/10.1111/1365-2478.12116
  20. Mestayer, J., Cox, B., Wills, P., Kiyashchenko, D., Lopez, J., Costello, M., Bourne, S., Ugeuto, G., Lupton, R., Solano, G., Hill, D., and Lewis, A., 2011, Field trials of distributed acoustic sensing for geophysical monitoring, SEG Technical Program Expanded Abstracts, 4253-4257. https://doi.org/10.1190/1.3628095
  21. Mora, P., 1987, Nonlinear two-dimensional elastic inversion of multi offset seismic data, Geophysics, 52(9), 1211-1228. https://doi.org/10.1190/1.1442384
  22. Officer, C. B., 1958, Introduction to the theory of sound transmission: With application to the ocean, MCGraw-Hill.
  23. Osypov, K., Kazei, V., Bakulin, A., and Nivlet, P., 2021, Seismic monitoring for CO2 sequestration: DAS+ FWI+ ML, SEG Technical Program Expanded Abstracts, 3014-3018. https://doi.org/10.1190/segam2021-3594099.1
  24. Pica, A., Diet, J. P., and Tarantola, A., 1990, Nonlinear inversion of seismic reflection data in a laterally invariant medium, Geophysics, 55(3), 284-292. https://doi.org/10.1190/1.1442836
  25. Podgornova, O., Leaney, S., Zeroug, S., and Liang, L., 2017, On full-waveform modeling and inversion of fiber-optic VSP data, SEG Technical Program Expanded Abstracts, 6039-6043. https://doi.org/10.1190/segam2017-17652912.1
  26. Pratt, R. G., Shin, C., and Hicks, G. J., 1998, Gauss-newton and full newton method in frequency-space seismic waveform inversion, Geophys. J. Int., 133(2), 341-362. https://doi.org/10.1046/j.1365-246X.1998.00498.x
  27. Shin, C., Yoon, K., Marfurt, K. J., Park, K., Yang, D., Lim, H. Y., Chung, S., and Shin, S., 2001, Efficient calculation of a partial-derivative wavefield using reciprocity for seismic imaging and inversion, Geophysics, 66(6), 1856-1863. https://doi.org/10.1190/1.1487129
  28. Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49(8), 1259-1266. https://doi.org/10.1190/1.1441754
  29. Vigh, D., and Starr, E. W., 2008, 3D prestack plane-wave, full-waveform inversion, Geophysics, 73(5), VE135-VE144. https://doi.org/10.1190/1.2952623
  30. Virieux, J., 1984, SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method, Geophysics, 49(11), 1933-1942. https://doi.org/10.1190/1.1441605
  31. Wang, Z., Simoncelli, E. P., and Bovik, A. C., 2003, Multiscale structural similarity for image quality assessment, The Thrity-Seventh Asilomar Conference on Signals, Systems and Computers, 2, 1398-1402. doi:10.1109/ACSSC.2003.1292216
  32. Zhan, Z., 2020, Distributed acoustic sensing turns fiber-optic cables into sensitive seismic antennas, Seismol. Res. Lett., 91(1), 1-15. https://doi.org/10.1785/0220190112