DOI QR코드

DOI QR Code

3차원 해저면 탄성파 탐사 자료에 대한 2차원/3차원 음향 전파형역산 비교

Comparison of the 2D/3D Acoustic Full-waveform Inversions of 3D Ocean-bottom Seismic Data

  • 노희찬 (전북대학교 환경에너지융합학과) ;
  • 박세은 (전북대학교 환경에너지융합학과) ;
  • 지형근 (전북대학교 환경에너지융합학과) ;
  • 김석한 (전북대학교 환경에너지융합학과) ;
  • 이향월 (중원대학교 대학교육혁신센터) ;
  • 오주원 (전북대학교 자원에너지공학과)
  • Hee-Chan, Noh (Dept. of Environment and Energy, Jeonbuk National University) ;
  • Sea-Eun, Park (Dept. of Environment and Energy, Jeonbuk National University) ;
  • Hyeong-Geun, Ji (Dept. of Environment and Energy, Jeonbuk National University) ;
  • Seok-Han, Kim (Dept. of Environment and Energy, Jeonbuk National University) ;
  • Xiangyue, Li (University Education Innovation Center, Jungwon University) ;
  • Ju-Won, Oh (Dept. of Mineral Resources and Energy Engineering, Jeonbuk National University)
  • 투고 : 2022.11.10
  • 심사 : 2022.11.25
  • 발행 : 2022.11.30

초록

탄성파 탐사 자료의 영상화를 통해 지층의 구조를 파악하기 위해서는 지하 매질의 탄성파 속도 정보가 필수적이다. 지하 매질의 속도를 추정하기 위해 전파형역산(Full waveform inversion) 기술이 주목을 받고 있지만 3차원 전파형역산은 방대한 컴퓨터 자원과 계산 시간이 요구된다. 본 연구에서는 3차원 음향 전파형역산과 2차원 음향 전파형역산의 계산 성능과 정확성을 비교하고, 회절각 필터링 기술을 이용한 주파수영역 2차원 전파형역산을 통해 2차원 근사의 한계점을 일부 보완할 수 있음을 확인한다. 큰 반사각도의 성분만을 이용하는 회절각 필터링 기술을 적용하여, 3차원 탐사자료를 통해 2차원으로 근사할 때 문제가 될 수 있는 2차원 단면을 벗어난 지역으로부터의 반사파의 영향을 줄이고, 3차원 전파형역산과 구조보정에 필요한 장파장 속도구조를 구축할 수 있을 것으로 기대한다.

To understand an underlying geological structure via seismic imaging, the velocity information of the subsurface medium is crucial. Although the full-waveform inversion (FWI) method is considered useful for estimating subsurface velocity models, 3D FWI needs a lot-of computing power and time. Herein, we compare the calculation efficiency and accuracy of frequency-domain 2D and 3D acoustic FWIs. Thereafter, we demonstrate that the artifacts from 2D approximation can be partially suppressed via frequency-domain 2D FWI by employing diffraction angle filtering (DAF). By applying DAF, which employs only big reflection angle components, the impact of noise and out-of-plane reflections can be reduced. Additionally, it is anticipated that the DAF can create long-wavelength velocity structures for 3D FWI and migration.

키워드

과제정보

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(No. 20212010200020). 볼브 유전지역의 3차원 탐사자료를 제공해 주신 Equinor에 감사드립니다.

참고문헌

  1. Alguliyev, R., Aliguliyev, R., Imamverdiyev, Y., and Sukhostat, L., 2022, History matching of petroleum reservoirs using deep neural networks, Intelligent Systems with Applications, 16, 200128. doi:10.1016/j.iswa.2022.200128
  2. Biondi, B. L., 2006, 3D seismic imaging, Society of Exploration Geophysicists, 17p. https://library.seg.org/doi/pdf/10.1190/1.9781560801689.fm
  3. da Costa Filho, C. A., Meles, G. A., Curtis, A., Ravasi, M., and Kritski, A., 2018, Imaging strategies using focusing functions with applications to a North Sea field, Geophysical Journal International, 213(1), 561-573. doi:10.1093/gji/ggx562
  4. Hwang, J., Oh, J. W., and Min, D. J., 2022, Acoustic fullwaveform inversion to match far-offset reflections with pseudo-horizontal particle acceleration data, Exploration Geophysics, 53(2), 211-228. doi:10.1080/08123985.2021.1919016
  5. Kim, D., Hwang, J., Min, D. J., Oh, J. W., and Alkhalifah, T., 2022, Two-step full waveform inversion of diving and reflected waves with the diffraction-angle-filtering-based scale-separation technique, Geophysical Journal International, 229(2), 880-897. doi: 10.1093/gji/ggab522
  6. Kim, S., Chung, W., and Shin, S., 2019, Acoustic full-waveform inversion using adam optimizer, Geophysics and Geophysical Exploration, 22(4), 202-209. doi:10.7582/GGE.2019.22.4.202
  7. Mulder, W. A., and Plessix, R. E., 2008, Exploring some issues in acoustic full waveform inversion, Geophysical Prospecting, 56(6), 827-841. doi:10.1111/j.1365-2478.2008.00708.x
  8. Nguyen, B. D., and McMechan, G. A., 2013, Excitation amplitude imaging condition for prestack reverse-time migration, Geophysics, 78(1), 37-46. doi:10.1190/geo2012-0079.1
  9. Oh, J. W., and Alkhalifah, T., 2016, The scattering potential of partial derivative wavefields in 3-D elastic orthorhombic media: an inversion prospective, Geophysical Journal International, 206(3), 1740-1760. doi:10.1093/gji/ggw238
  10. Oh, J. W., Kalita, M., and Alkhalifah, T., 2018, 3D elastic fullwaveform inversion using P-wave excitation amplitude: Application to ocean bottom cable field data, Geophysics, 83(2), R129-R140. doi:10.1190/geo2017-0236.1
  11. Oh, J. W., and Alkhalifah, T., 2018a, Full waveform inversion using envelope-based global correlation norm, Geophysical Journal International, 213(2), 815-823. doi:10.1093/gji/ggy031
  12. Oh, J. W., and Alkhalifah, T., 2018b, Optimal full-waveform inversion strategy for marine data in azimuthally rotated elastic orthorhombic media, Geophysics, 83(4), R307-R320. doi:10.1190/geo2017-0762.1
  13. Oh, J. W., and Alkhalifah, T., 2019, Study on the full?waveform inversion strategy for 3D elastic orthorhombic anisotropic media: Application to ocean bottom cable data, Geophysical Prospecting, 67(5), 1219-1242. doi:10.1111/1365-2478.12768
  14. Oh, J. W., Cheng, J., and Min, D. J., 2021, Diffraction-angle filtering of gradient for acoustic full-waveform inversion Diffraction-angle filtering for AFWI, Geophysics, 86(2), R173-R185. doi:10.1190/geo2019-0801.1
  15. Oh, J. W., 2022, Review of 3D Anisotropic seismic imaging technology, Journal of the Korean Society of Mineral and Energy Resources Engineers, 59(2), 240-258. https://www.jksmer.or.kr/articles/article/n24K/ https://doi.org/10.32390/ksmer.2022.59.2.240
  16. Operto, S., Brossier, R., Combe, L., Metivier, L., Ribodetti, A., and Virieux, J., 2014, Computationally efficient three-dimensional acoustic finite-difference frequency-domain seismic modeling in vertical transversely isotropic media with sparse direct solver, Geophysics, 79(5), T257-T275. doi:10.1190/geo2013-0478.1
  17. Plessix, R. E., 2006, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications, Geophysical Journal International, 167(2), 495-503. doi:10.1111/j.1365-246X.2006.02978.x
  18. Pratt, R. G., Shin, C., and Hick, G. J., 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion, Geophysical journal international, 133(2), 341-362. doi:10.1046/j.1365-246X.1998.00498.x
  19. Ravasi, M., Vasconcelos, I., Curtis, A., and Kritski, A., 2015, Vector-acoustic reverse time migration of Volve ocean-bottom cable data set without up/down decomposed wavefields, Geophysics, 80(4), S137-S150. doi:10.1190/geo2014-0554.1
  20. Rocha, D., Tanushev, N., and Sava, P., 2016, Acoustic wavefield imaging using the energy norm, Geophysics, 81(4), S151-S163. doi:10.1190/geo2015-0486.1
  21. Sen, S., and Ganguli, S. S., 2019, Estimation of pore pressure and fracture gradient in Volve field, Norwegian North Sea, In SPE oil and gas india conference and exhibition, OnePetro. doi:10.2118/194578-MS
  22. Shin, C., and Min, D. J., 2006, Waveform inversion using a logarithmic wavefield. Geophysics, 71(3), R31-R42. https://sspace.snu.ac.kr/bitstream/10371/6107/1/Logarithm_inversion_2006_CSShin.pdf 10371/6107/1/Logarithm_inversion_2006_CSShin.pdf
  23. Shin, C., Jang, S., and Min, D. J., 2001, Improved amplitude preservation for prestack depth migration by inverse scattering theory, Geophysical Prospecting, 49(5), 592-606. doi:10.1046/j.1365-2478.2001.00279.x
  24. Shin, Y., Oh, J. W., Kim, S., and Min, D. J., 2019, Monocomponent multiparameter acoustic full waveform inversion in vertically transverse isotropic media using converted vector wavefields, Journal of Applied Geophysics, 170, 103816. doi:10.1016/j.jappgeo.2019.07.010
  25. Shin, Y., Oh, J. W., and Min, D. J., 2021, An efficient multiparameter acoustic anisotropic full-waveform inversion depending on parameterization, Acta Geophysica, 69(4), 1257-1267. https://link.springer.com/article/10.1007/s11600-021-00609-2
  26. Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49(8), 1259-1266. https://www.ipgp.fr/~tarantola/Files/Professional/Papers_PDF/InversionOfSeismic.pdf https://doi.org/10.1190/1.1441754
  27. Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics, Geophysics, 74(6), WCC1-WCC26. doi:10.1190/1.3238367
  28. Wang, B., Sharma, J., Chen, J., and Persaud, P., 2021, Ensemble machine learning assisted reservoir characterization using field production data-an offshore field case study, Energies, 14(4), 1052. doi:10.3390/en14041052
  29. Whitmore, N. D., and Crawley, S., 2012, Applications of RTM inverse scattering imaging conditions, In 2012 SEG Annual Meeting, OnePetro. https://onepetro.org/SEGAM/proceedings-abstract/SEG12/All-SEG12/SEG-2012-0779/98158
  30. Zelt, C. A., and Zelt, B. C., 1998, Study of out-of-plane effects in the inversion of refraction/wide-angle reflection traveltimes, Tectonophysics, 286, 209-221. doi:10.1016/S0040-1951(97) 00266-7
  31. Zhou, W., Brossier, R., Operto, S., Virieux, J., and Yang, P., 2018, Velocity model building by waveform inversion of early arrivals and reflections: A 2D case study with gas-cloud effects, Geophysics, 83(2), R141-R157. doi:10.1190/geo2017-0282.1 inversion using adam optimizer, Geophysics and Geophysical Exploration, 22(4), 202-209. doi:10.7582/GGE.2019.22.4.202