DOI QR코드

DOI QR Code

An Evaluation of Flexural Strength of Hollow Concrete Filled FRP Tube Piles

중공형 콘크리트 충전 FRP Tube 말뚝의 휨강도 산정

  • 김형준 (청운대학교 토목환경공학과) ;
  • 정흥진 (전주대학교 토목환경공학과)
  • Received : 2022.11.04
  • Accepted : 2022.12.08
  • Published : 2022.12.31

Abstract

In this study, Hollow Concrete Filled FRP Tube Pile(HCFFT Pile) was proposed as a model to utilize the advantages of composite piles and solve the problem of corrosion, which is a disadvantage of CFT piles, and a numerical analysis model was developed to analyze their behavior. The strain compatibility method was applied considering the damage plastic behavior of concrete, the yield plastic behavior of steel, and the elastic behavior of FRP. The flexural strength calculation equation of HCFFT piles was proposed considering the change of the FRP tube section according to the distance from the neutral axis. The flexural strength calculation equation, numerical analysis results, and experimental results were compared and analyzed to verify their adequacy. The results of this study can be used as basic data for the optimal design of various HCFFT piles using FRP.

본 연구에서는 복합말뚝의 장점을 활용하고 CFT말뚝의 단점인 부식에 대한 문제점을 해결할 수 있는 모델로 중공형 콘크리트 충전 FRP Tube 말뚝(Hollow Concrete Filled FRP Tube Pile, HCFFT말뚝)을 제시하였고, 수치해석 모델을 개발하여 거동을 분석하였다. 콘크리트가 손상 소성 거동, 강재가 항복 소성 거동, FRP가 탄성 거동을 한다는 것을 고려하여 변형률적합법을 적용하고, 중립축으로부터의 거리에 따른 FRP Tube 단면의 변화를 고려하여 HCFFT말뚝의 휨 강도 산정식을 제안하였다. 휨 강도 산정식과 수치해석 결과, 실험결과를 비교 분석하여 적정성을 검증하였다. 본 연구 결과는 FRP를 이용한 다양한 HCFFT말뚝의 최적설계에 기초자료로서 활용될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 청운대학교 2022학년도 학술 연구 조성비 지원을 받아 수행되었으며, 연구비 지원에 감사드립니다.

References

  1. Kang, H. K., Lee, C. H., and Rha, C. S. (2011), Flexural Strength of Concrete-filled Steel Tubular Members Subjected to Pure Bending Moment, Journal of Architectural Institute of Korea, 27(4), 11-21.
  2. Chung, H. J., and Paik, K. H. (2018), Analysis on Flexural Behavior of Hollow Prestressed Concrete Filled Steel Tube Piles, Journal of the Korea Institute for Structural Maintenance and Inspection, 22(2), 133-140. https://doi.org/10.11112/JKSMI.2018.22.2.133
  3. Moon, K. T., Park, S. Y., and Kim, M. K. (2015), Strengthening Effect of Axial Circular Concrete Members Wrapped by CFRP sheet, Journal of the Korea Institute for Structural Maintenance and Inspection, 19(5), 10-21. https://doi.org/10.11112/JKSMI.2015.19.5.010
  4. Mohamed, H. M., and Masmoudi, R. (2010), Flexural strength and behavior of steel and FRP-reinforced concrete-filled FRP tube beams, Enjineering Structures, 32, 3789-3800. https://doi.org/10.1016/j.engstruct.2010.08.023
  5. Lee, C. H., Kang, K. Y., Kim, S. Y., and Koo, C. H. (2013), Review of Structural Design Provisions of Rectangular Cocrete Filled Tubular Columns, Journal of Korean Society of Steel Construction, 25(4), 389-398. https://doi.org/10.7781/KJOSS.2013.25.4.389
  6. Sumer, Y., and Aktas, M. (2015), Defining parameters for concrete damage plasticity model, Challenge Journal of Strctural Mechanics, 1(3), 149-155.
  7. Lubiner, J., Oliver, J., Oller, S., and Onate, E. (1989), A plastic-damage model for concrete, International Journal of Solids and Structures, 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
  8. Tao, Y., and Chen, J. (2015), Concrete damage plasticity model for modeling FRP-to-concrete bond behavior, Journal of Composites for Construction, 19(1).
  9. Yoo, S. W., and Kang, G. R. (2017), Influence of Various Parameter for Nonlinear Finite Element Analysis of FRP-Concrete Composite Beam Usimg Concrete Damaged Plasticity Model, Journal of the Korea Academia-Industrial cooperation Society, 18(2), 697-703. https://doi.org/10.5762/KAIS.2017.18.2.697
  10. Shin, E. S. (2014), Mechanics & Applications of Composite Materials, Chonbuk National University Press, chapter 6, 1-9.
  11. KDS 14 20 10, Korea Construction Standards Center.
  12. ACI 440, American Concrete Institute.
  13. Abaqus for Windows, Simulia.
  14. EUROCODE2, European Committee for Standardization.