DOI QR코드

DOI QR Code

Study on Improvement of Thermal Stability of Dendrite-shape Copper Particles by Electroless Silver Plating

Dendrite 형상 구리 입자의 무전해 은 도금에 의한 열적 안정성 향상에 관한 연구

  • Received : 2022.10.05
  • Accepted : 2022.10.11
  • Published : 2022.12.10

Abstract

While in the process of electroless plating of dendrite-shape copper with silver, various silver-coated copper (Ag@Cu) particles were prepared by using both displacement plating and reducing electroless plating. The physicochemical properties of Ag@Cu particles were analyzed by scanning electron microscope- energy-dispersive X-ray spectroscopy (SEM-EDS), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Brunauer-Emmett-Teller analysis (BET), and it was confirmed that the silver coated by the reducing electroless plating was formed as nano-particles on the copper surface. Ag@Cu particles were compounded with an epoxy resin to prepare a conductive film, and its thermal stability was evaluated. We investigated the effect of the difference between the displacement plating and reducing electroless plating on the initial resistance and thermal stability of conductive films.

Dendrite 형태의 구리 입자 표면을 은으로 무전해 도금을 하는 과정에서, 치환도금(displacement plating)과 화학 환원도금(reducing electroless plating)을 병용하여 다양한 silver-coated copper (Ag@Cu) 입자들을 제조하였다. Ag@Cu 입자들의 물리화학적 특성은 SEM-EDS, TGA, XPS, XRD 및 BET 등으로 분석하였으며, 환원반응에 의하여 코팅되는 은은 구리 입자 표면에 나노 입자 형태로 형성되는 것을 확인할 수 있었다. Ag@Cu 입자들을 에폭시 수지와 복합화하여 도전성 필름을 제조하고 그의 열적 안정성을 평가하였다. 치환 반응과 환원 반응의 차이가 Ag@Cu 필름의 초기 저항 및 열적 안정성에 미치는 영향에 관하여 연구하였다.

Keywords

Acknowledgement

본 논문은 중소벤처기업부의 2020년 구매조건부신제품개발사업 연구비에서 지원된 연구(과제번호 : S2951389, 과제명 : 저온 소결이 가능한 전도성 접착제용 은 나노입자 결합형 하이브리드 금속분말 개발)이며, 이에 감사를 드립니다.

References

  1. B. Bridge, M. J. Folkes, and B. R. Wood, Investigation into the DC conductivity of colloidally dispersed gold/polymer composites, J. Phys. Appl. Phys., 23, 890-898 (1990). https://doi.org/10.1088/0022-3727/23/7/021
  2. C. Vericat, M. E. Vela, G. Benitez, p. Carro, and R. C. Salvarezza, Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system, Chem. Soc. Rev., 39, 1805-1834 (2010). https://doi.org/10.1039/b907301a
  3. A. S. Cebrian, F. Klunker, and M. Zogg, Simulation of the Cure of Paste adhesives by induction heating, J. Compos. Mater., 48, 1459-1474 (2013). https://doi.org/10.1177/0021998313487933
  4. I. Novak, and I. Krupa, Electro-conductive resins filled with graphite for casting applications, Eur. Polym. J., 40, 1417-1422 (2004). https://doi.org/10.1016/j.eurpolymj.2004.01.033
  5. W. Lin, X. Xi, and C. Yu, Research of silver plating nano-graphite filled conductive adhesive, Synth. Met., 159, 619-624 (2009). https://doi.org/10.1016/j.synthmet.2008.12.003
  6. R. Aradhana, S. Mohanty, and S. K. Nayak, A review on epoxy-based electrically conductive adhesives, Int. J. Adhes. Adhes., 99, 102596 (2020). https://doi.org/10.1016/j.ijadhadh.2020.102596
  7. V. Brusic, M. A. Frisch, B. N. Eldridge, F. P. Novak, F. B. Kaufman, B. M. Rush, and G. S. Frankel, Copper corrosion with and without inhibitors, J. Electrochem. Soc., 138, 2253-2259 (1991). https://doi.org/10.1149/1.2085957
  8. E. M. Sherif, and S. M. Park, Inhibition of copper corrosion in 3.0% NaCl solution by N-phenyl-1,4-phenylenediamine, J. Electrochem. Soc., 152, B428-B433 (2005). https://doi.org/10.1149/1.2018254
  9. Y. S. Tan, M. P. Srinivasan, S. O. Pehkonen, and S. Y. M. Chooi, Effects of ring substituents on the protective properties of self-assembled benzenethiols on copper, Corros. Sci., 48, 840-862 (2006). https://doi.org/10.1016/j.corsci.2005.02.029
  10. Y. S. Lin, and S. S. Chiu, Electrical properties of conductive adhesives as affected by particle compositions, particle shapes, and oxidizing temperatures of copper powders in a polymer matrix, J. Appl. Polym. Sci., 93, 2045-2053 (2004). https://doi.org/10.1002/app.20670
  11. Y. S. Lin, and S. S. Chiu, Electrical properties of copper-filled electrically conductive adhesives and pressure-dependent conduction behavior of copper particles, J. Adhes. Sci. Technol., 22, 1673-1697 (2008). https://doi.org/10.1163/156856108X320537
  12. D. S. Jung, H. M. Lee, Y. C. Kang, and S. B. Park, Air-stable silver-coated copper particles of sub-micrometer size, J. Colloid Interface Sci., 364, 574-581 (2011). https://doi.org/10.1016/j.jcis.2011.08.033
  13. J. Zhao, and D. Zhang, Epoxy-based adhesives filled with flakes ag-coated copper as conductive fillers, Polym. Compos., 38, 846-851 (2015). https://doi.org/10.1002/pc.23645
  14. S. Z. Mousavi, and M. Pourabdoli, Silver-coated copper particles as a new raw material for manufacturing electrical contacts, Microelectron. Reliab., 134, 114554 (2022). https://doi.org/10.1016/j.microrel.2022.114554
  15. K. S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, and C. P. Wong, Thermal behavior of silver nanoparticles for low-temperature interconnect applications, J. Electron. Mater., 34, 168-175 (2005). https://doi.org/10.1007/s11664-005-0229-8
  16. S. Magdassi, M. Grouchko, O. Berezin, and A. Kamyshny, Triggering the Sintering of Silver Nanoparticles at Room Temperature, ACS Nano, 4, 1943-1948 (2010). https://doi.org/10.1021/nn901868t
  17. J. Sudagar, J. Lian, and W. Sha, Electroless nickel, alloy, composite and nano coatings - A critical review, J. Alloys. Compd., 571, 183-204 (2013). https://doi.org/10.1016/j.jallcom.2013.03.107
  18. M. Erfanmanesh, R. Shoja-Razavi, H. Abdollah-Pour, and H. Mohammadian-Semnani, Influence of using electroless Ni-P coated WC-Co powder on laser cladding of stainless steel, Surf. Coat. Technol., 348, 41-54 (2018). https://doi.org/10.1016/j.surfcoat.2018.05.016
  19. O. Guler, u. Alver, and T. Varol, Fabrication and characterization of novel layered materials produced by electroless plating and hot pressing, J. Alloys. Compd., 835, 155278 (2020). https://doi.org/10.1016/j.jallcom.2020.155278
  20. L. Bois, F. Chassagneux, C. Desroches, Y. Battie, N. Destouches, N. Gilon, S. Parola, and O. Stephan, Electroless growth of silver nanoparticles into mesostructured silica block copolymer films, Langmuir, 26, 8729-8736 (2010). https://doi.org/10.1021/la904491v
  21. M. Montazer, and V. Allahyarzadeh, Electroless Plating of Silver Nanoparticles/Nanolayer on Polyester Fabric Using AgNO3/NaOH and Ammonia, Ind. Eng. Chem. Res., 52, 8436-8444 (2013). https://doi.org/10.1021/ie400804n
  22. H. Daisuke, K. Kota, and O. Akira, Reducing electroless silver plating solution and reducing electroless silver plating method, US Patent 20140242288 A1 (2014).
  23. X. G. Cao, and H. Y. Zhang, Preparation of silver-coated copper powder and its oxidation resistance research, Powder Technol., 226, 53-56 (2012). https://doi.org/10.1016/j.powtec.2012.04.012
  24. Y. S. Lin, and S. S. Chiu, Effects of oxidation and particle shape on critical volume fractions of silver-coated copper powders in conductive adhesives for microelectronic applications, Polym. Eng. Sci., 44, 2075-2082 (2004). https://doi.org/10.1002/pen.20212
  25. M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. S. C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn, Appl. Surf. Sci., 257, 887-898 (2010). https://doi.org/10.1016/j.apsusc.2010.07.086
  26. Y. S. Park, C. Y. An, P. K. Kannan, N. Seo, K. Zhuo, T. K. Yoo, and C. -H. Chung, Fabrication of dendritic silver-coated copper powders by galvanic displacement reaction and their thermal stability against oxidation, Appl. Surf. Sci., 389, 865-873 (2016). https://doi.org/10.1016/j.apsusc.2016.08.008
  27. X. Zhu, L. Hu, and M. Dong, Synthesis and characterization of silver-coated copper powder layer, Key Eng. Mater., 512-515, 141-146 (2012). https://doi.org/10.4028/www.scientific.net/KEM.512-515.141
  28. T. Eliades, C. Gioka, G. Eliades, and M. Makou, Enamel surface roughness following debonding using two resin grinding methods, Eur. J. Orthod., 26, 333-338 (2004). https://doi.org/10.1093/ejo/26.3.333
  29. T. H. Kim, H. Kim, H. J. Jang, N. Lee, K. H. Nam, D. W. Chang, and S. Lee, Improvement of the thermal stability of dendritic silver-coated copper microparticles by surface modification based on molecular self-assembly, Nano Converg., 8, 15 (2021). https://doi.org/10.1186/s40580-021-00265-8