DOI QR코드

DOI QR Code

Durability enhancement of anion exchange membranes for water electrolysis: an updated review

  • Akter, Mahamuda (Department of Civil, Environmental and Biomedical Engineering, Sangmyung University) ;
  • Park, Jong-Hyeok (Department of Civil, Environmental and Biomedical Engineering, Sangmyung University) ;
  • Kim, Beom-Seok (Department of Green Chemical Engineering, Sangmyung University) ;
  • Lee, Minyoung (Department of Green Chemical Engineering, Sangmyung University) ;
  • Jeong, Dahye (Department of Green Chemical Engineering, Sangmyung University) ;
  • Shin, Jiyun (Department of Green Chemical Engineering, Sangmyung University) ;
  • Park, Jin-Soo (Department of Civil, Environmental and Biomedical Engineering, Sangmyung University)
  • Received : 2022.11.24
  • Accepted : 2022.12.02
  • Published : 2022.12.31

Abstract

Ion exchange membranes have been developed from laboratory tools to industrial products with significant technical and trade impacts in the last 70 years. Today, ion exchange membranes are successfully applied for water and energy for different electro-membrane processes. Hydrogen could be produced by electrochemical water splitting using renewable energy, for example, solar, biomass, geothermal and wind energy. This review briefly summarizes the recent studies reporting the state-of-the-art anion-exchange membrane water electrolysis, especially focusing on the enhancement of the durability of anion-exchange membranes. Anion-exchange membrane water electrolysis could be used as inexpensive non-noble metal electrocatalysts that are capable of producing low cost of hydrogen. However, the main challenge of anion-exchange membrane water electrolysis is to increase the performance and durability. In this mini review, the limiting factors of the durability and the technology enhancing the durability will be discussed for anion exchange membrane water electrolysis.

Keywords

Acknowledgement

This research was supported by "Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ016253)" Rural Development Administration, Republic of Korea.

References

  1. Y. He, X. Gao, Y. Wang, Sustainable financial development: does it matter for greenhouse as emissions?, Sustainability, 14 (2022) 5064-5086. https://doi.org/10.3390/su14095064
  2. D. D. Tham, D. Kim, C2 and N3 substituted imidazolium functionalized poly(arylene ether ketone) anion exchange membrane for water electrolysis with improved chemical stability, J. Membr. Sci., 581 (2019) 139-149. https://doi.org/10.1016/j.memsci.2019.03.060
  3. F. Razmjooei, T. Morawietz, E. Taghizadeh, E. Hadjixenophontos, L. Mues, M. Gerle, B. D. Wood, C. Harms, A. S. Gago, S. A. Ansar, K. A. Friedrich, Increasing the performance of an anion exchange membrane electrolyzer operating in pure water with a nickel-based microporous layer, Joule, 5 (2021) 1776-1799. https://doi.org/10.1016/j.joule.2021.05.006
  4. J. Lee, H. Jung, Y. S. Park, S. Woo, N. Kwon, Y. Xing, S, H. Oh, S. M. Choi, Jeong W. Han, B. Lim, Corrosion-engineered bimetallic oxide electrode as anode for high-efficiency anion exchange membrane water electrolyzer, Chem. Eng. J., 10 (2020) 1-10. https://doi.org/10.1016/0300-9467(75)88013-0
  5. G.C. Chen, T. H. Wondimu, H.C. Huang, K.C. Wang, C.H. Wang, Microwave-assisted facile synthesis of cobalteiron oxide nanocomposites for oxygen production using alkaline anion exchange membrane water electrolysis, Int. J. Hydrog. Energy, 44 (2019) 10174-10181. https://doi.org/10.1016/j.ijhydene.2019.02.215
  6. T. Xu, Ion exchange membranes: state of their development and perspective, J. Membr. Sci., 263 (2005) 1-29. https://doi.org/10.1016/j.memsci.2005.05.002
  7. H. Ito, N. Kawaguchi, S. Someya, Tetsuo Munakata, N. Miyazaki, M. Ishida, A. Nakano, Experimental investigation of electrolytic solution for anion exchange membrane water electrolysis, Int. J. Hydrog. Energy, 143 (2018) 1-10. https://doi.org/10.1016/j.energy.2017.10.123
  8. H. Li, M. R. Kraglund, A. K. Reumert, X. Ren, D. Aili, J. Yang, Poly(vinyl benzyl methylpyrrolidinium) hydroxide derived anion exchange membranes for water electrolysis, J. Mater. Chem. A, 48 (2019) 1-10.
  9. S. Kang, K. Ham, J. Lee, Moderate oxophilic CoFe in carbon nanofiber for the oxygen evolution reaction in anion exchange membrane water electrolysis, Electrochimi. Acta, 353 (2020) 136521-136531. https://doi.org/10.1016/j.electacta.2020.136521
  10. D. Li, E. J. Park, W. Zhu, Q. Shi, Y. Zhou, H, Tian, Y, Lin, A. Serov, B. Zulevi, E. D. Baca, C. Fujimoto, H. T. Chung, Y. S. Kim, Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers, Nat. Energy, 577 (2020) 1-18.
  11. Y. S. Park, J. H. Lee, M. J. Jang, J. Jeong, S. M. Park, W.S. Choi, Y. Kim, J. yang, S. M. Choi, Co3S4 nanosheets on Ni foam via electrodeposition with sulfurization as highly active electrocatalysts for anion exchange membrane electrolyzer, Int. J. Hydrog. Energy, 45 (2020) 36-45. https://doi.org/10.1016/j.ijhydene.2019.10.169
  12. I. Vincent, E. C. Lee, H.M. Kim, Comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production, Sci. Rep., 11 (2021) 1-12. https://doi.org/10.1038/s41598-020-79139-8
  13. W. Guo, J. Kim, H. Kim, S. H. Ahn, CuCo-P electrodeposited on carbon paper as an efficient electrocatalyst for hydrogen evolution reaction in anion exchange membrane water electrolyzers, Int. J. Hydrog. Energy, 46 (2021) 19789-19801. https://doi.org/10.1016/j.ijhydene.2021.03.120
  14. C. Li, J. B. Baek, Recent advances in noble Metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction, ACS Omega, 5 (2020) 31-40. https://doi.org/10.1021/acsomega.9b03550
  15. D. M. Mandal, Recent advancement on anion exchange membranes for fuel cell and ater Electrolysis, ChemElectroChem., 329 (2020) 1-23.
  16. N. Manjula, R. Balaji, K. Ramya, N. Rajalakshmi, Hydrogen production by electrochemical methanol reformation using alkaline anion exchange membrane based cell, Int. J. Hydrog. Energy, 45 (2020) 10304-10312. https://doi.org/10.1016/j.ijhydene.2019.08.202
  17. D. Li, A. R. Motz, C. Bae, C. Fujimoto, G. Yang, F. Y. Zhang, K. Ayers, Y. S. Kim, Durability of anion exchange membrane water electrolyzers, Energy Environ. Sci., 14 (2021) 3393-3419. https://doi.org/10.1039/D0EE04086J
  18. D. K. Bora, P. P. Bavdane, V. Dave, S. Sreenath, G. Sethia, A. K. Satpati, R. K. Nagarale, Fabrication of alkaline electrolyzer using Ni@ MWCNT as an effective electrocatalyst and composite anion exchange membrane, ACS Omega, 7 (2022) 15467-15477. https://doi.org/10.1021/acsomega.2c00070
  19. M. Mandal, G. Huang, N. U. Hassan, X. Peng, Taoli Gu, A. H. B.-Starks, B. Bahar, W. E. Mustain, P. A. Kohl. The importance of water transport in high conductivity and high-power alkaline fuel cells, J. Electrochem. Soc., 167 (2020) 054501-054512 https://doi.org/10.1149/2.0022005jes
  20. S. Miyanishi, T. Yamaguchi, Highly conductive mechanically robust high Mw polyfluorene anion exchange membrane for alkaline fuel cell and water electrolysis application, Polym. Chem., 11 (2020) 3812-3820. https://doi.org/10.1039/d0py00334d
  21. H. J. Park, S. Y. Lee. T. K. Lee, H. J. Kim, Y. M. Lee, N3-butyl imidazolium-based anion exchange membranes blended with poly (vinyl alcohol) for alkaline water electrolysis, J. Membr. Sci., 611 (2022) 118355-118365. https://doi.org/10.1016/j.memsci.2020.118355
  22. H. Li, N. Yu, F. Gellrich, A. K. Reumert, M. R. Kraglund, J. Dong, D. Aili, J. Yang, Diamine crosslinked anion exchange membranes based on poly(vinyl benzyl methylpyrrolidinium) for alkaline water electrolysis, J. Membr. Sci., 633 (2021) 119418. https://doi.org/10.1016/j.memsci.2021.119418
  23. X. Chu, Y. Shi, L. Liu, Y. Huang, N. Li, Piperidinium-functionalized anion Exchange membranes and its application in alkaline fuel cell and water electrolysis, J. Mater. Chem., 7 (2019) 7717-7727. https://doi.org/10.1039/c9ta01167f
  24. M. K. Cho, H. Y. Park, H. J. Lee, H. J. Kim, A. Lim, D. Henkensmeier, S. J. Yoo, J. Y. Kim, S. Y. Lee, H. S. Park, J. H. Jang, Alkaline anion exchange membrane water electrolysis: Effects of electrolyte feed method and electrode binder content, J. Power Sources, 382 (2018) 22-29. https://doi.org/10.1016/j.jpowsour.2018.02.025
  25. Z. Liu, S. D. Sajjad, Y. Gao, H. Yang, J. J. Kaczur, R. I. Masel, The effect of membrane on an alkaline water electrolyzer, Int. J. Hydrog. Energy, 42 (2017) 29661-29665. https://doi.org/10.1016/j.ijhydene.2017.10.050