Acknowledgement
이 논문은 2022년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임. (NRF-2020R1I1A1A01066501)
References
- M. I. Boulos, New frontiers in thermal plasma processing, Pure & Appl. Chem., 68 (1996) 1007-1010. https://doi.org/10.1351/pac199668051007
- K. S. Kim, T. H. Kim, Nanofabrication by thermal plasma jets: From nanoparticles to low-dimensional nanomaterials, J. Appl. Phys., 125 (2019) 070901. https://doi.org/10.1063/1.5060977
- T. Ishigaki, Y. Moriyoshi, Thermal plasma treatment of titanium carbide powders: Part II. In-flight formation of carbon-site vacancies and subsequent nitridation in titanium carbide powders during induction plasma treatment, J. Mater. Res., 11 (2011) 2811-2824. https://doi.org/10.1557/JMR.1996.0356
- T. Ishigaki, H. Haneda, N. Okada, S. Ito, Surface modification of titanium oxide in pulse-modulated induction thermal plasma, Thin Solid Films, 390 (2001) 20-25. https://doi.org/10.1016/S0040-6090(01)00935-X
- C. M. Huang, L. C. Chen, K. W. Cheng, G. T. Pan, Effect of nitrogen-plasma surface treatment to the enhancement of TiO2 photocatalytic activity under visible light irradiation, J. Mol. Catal. A Chem., 261 (2007) 218-224. https://doi.org/10.1016/j.molcata.2006.08.020
- H. Tanaka, T. Osawa, Y. Moriyoshi, M. Kurihara, S. Maruyama, T. Ishigaki, Improvement of the anode performance of graphite particles through surface modification in RF thermal plasma, Thin Solid Films, 457 (2004) 209-216. https://doi.org/10.1016/j.tsf.2003.12.024
- H. Tanaka, J.Y. Xu, M. Kurihara, S. Maruyama, N. Ohashi, Y. Moriyoshi, T. Ishigaki, Anomalous improvement of the electrochemical properties of mesocarbon microbeads by Ar-H2-SF6 thermal plasma treatment, Carbon, 42 (2004) 3229-3235. https://doi.org/10.1016/j.carbon.2004.08.011
- A. Shahverdi, K. S. Kim, Y. Alinejad, G. Soucy, In situ purity enhancement/surface modification of single-walled carbon nanotubes synthesized by induction thermal plasma, J. Nanopart. Res., 14 (2012) 14:660.
- Y. S. Na, S. Choi, D. W. Park, Carbon nanotube surface modification with the attachment of Si nanoparticles in a thermal plasma jet, Phys. Status Solidi A, 211 (2014) 2749-2755. https://doi.org/10.1002/pssa.201431377
- Y. Tanaka, T. Fujino, T. Iwao, Review of thermal plasma simulation technique, IEEJ Trans., 14 (2019) 1582-1594.
- Y. Tanaka, Time-dependent two-temperature chemically nonequilibrium modelling of high-power Ar-N2 pulse-modulated inductively coupled plasmas at atmospheric pressure, J. Phys. D: Appl. Phys., 39 (2006) 307-319. https://doi.org/10.1088/0022-3727/39/2/011
- K. Kuraishi, M. Akao, Y. Tanaka, Y. Uesugi, T. Ishijima, Temperature behavior in a tandem type of modulated induction thermal plasma for materials processings, J. Phys.: Conf. Ser., 441 (2013) 012016. https://doi.org/10.1088/1742-6596/441/1/012016
- Y. Maruyama, Y. Tanaka, H. Irie, T. Tsuchiya, M. K. S. Tial, Y. Uesugi, T. Ishijima, T. Yukimoto, H. Kawaura, Rapid surface oxidation of the Si substrate using longitudinally-long Ar/O2 loop type of inductively coupled thermal plasmas, IEEE Trans. Plasma Sci., 44 (2016) 3164-3171. https://doi.org/10.1109/TPS.2016.2603999
- M. K. S. Tial, H. Irie, Y. Maruyama, Y. Tanaka, Y. Uesugi, T. Ishijima, Fundamentals of planar-type inductively coupled thermal plasmas on a substrate for large-area material processing, Jpn. J. Appl. Phys., 55 (2016) 07LB03. https://doi.org/10.7567/JJAP.55.07LB03
- T. Tsuchiya, Y. Tanaka, Y. Maruyama, A. Fujita, M. K. S. Tial, Y. Uesugi, T. Ishijima, T. Yukimoto, H. Kawaura, Loop type of inductively coupled thermal plasmas system for rapid two-dimensional oxidation of Si substrate surface, Plasma Chem. Plasma Process, 38 (2018) 599-620. https://doi.org/10.1007/s11090-018-9881-7
- K. VanEvery, M. J. M. Krane, R. W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, J. Almer, Column formation in suspension plasma-sprayed coatings and resultant thermal properties, J. Therm. Spray Tech., 20 (2011) 817-828. https://doi.org/10.1007/s11666-011-9632-2
- R. S. Lima, B. R. Marple, Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review. J. Therm. Spray Tech., 16 (2007) 40-63. https://doi.org/10.1007/s11666-006-9010-7
- P. Xu, L. Pershin, J. Mostaghimi, T. W. Coyle, Efficient one-step fabrication of ceramic superhydrophobic coatings by solution precursor plasma spray, Mater. Lett., 211 (2018) 24-27. https://doi.org/10.1016/j.matlet.2017.09.077
- R. K. Sahoo, A. Das, S. K. Singh, B. K. Mishra, Synthesis of surface modified SiC superhydrophobic coating on stainless steel surface by thermal plasma evaporation method, Surf. Coat. Technol., 307 (2016) 476-483. https://doi.org/10.1016/j.surfcoat.2016.09.027
- P. K. Chu, J. Y. Chen, L. P. Wang, N. Huang, Plasma-surface modification of biomaterials, Mater. Sci. Eng. R Rep., 36 (2002) 143-206. https://doi.org/10.1016/S0927-796X(02)00004-9
- H. Kurzweg, R. B. Heimann, T. Troczynski, M. L. Wayman, Development of plasma-sprayed bioceramic coatings with bond coats based on titania and zirconia, Biomaterials, 19 (1998) 1507-1511. https://doi.org/10.1016/S0142-9612(98)00067-2
- S. W. K. Kweh, K. A. Khor, P. Cheang, Plasma-sprayed hydroxyapatite (HA) coatings with flame-spheroidized feedstock : microstructure and mechanical properties, Biomaterials, 21 (2000) 1223-1234. https://doi.org/10.1016/S0142-9612(99)00275-6