Acknowledgement
This work was supported by the Scientific Research Project of Zhejiang Natural Science Foundation, P.R. China (No. LY20G030018) and the Scientific Research Project of Wenzhou Science and Technology Bureau, P.R. China (No. 2013R0017).
References
- W. H. Bakun et al., Implications for prediction and hazard assessment from the 2004 parkfield earthquake, Nature 437 (2005), 969-974. https://doi.org/10.1038/nature04067
- J. A. Tenreiro Machado, C. M. A. Pinto, and A. Mendes Lopes, Power law and entropy analysis of catastrophic phenomena, Math. Prob. Eng. 2013 (2013), 1-10.
- H. Mata-Lima et al., Impactos dos desastres naturais nos sistemas ambiental e socioeconomico: O que faz a diferenca?, Amb. Soc. 16 (2013), 45-64. https://doi.org/10.1590/S1414-753X2013000300004
- M. Robin, Hogarth, Cognitive processes and the assessment of subjective probability distributions, J. Am. Stat. Assoc. 70 (1975), 271-289. https://doi.org/10.1080/01621459.1975.10479858
- W. Enders, T. Sandler, and K. Hartley. Chapter 26 terrorism: An empirical analysis, in Handbook of Defense Economics, vol. 2, Elsevier, North Holland, Netherlands, 2007, pp. 815-866.
- R. Caruso and A. Locatelli, Understanding Terrorism: A Socio-Economic Perspective, vol. 22, Emerald Publishing Group, Bingley, UK, 2014.
- X. Wang et al., Investigative visual analysis of global terrorism, Comp. Graphics Forum 27 (2008), 919-926. https://doi.org/10.1111/j.1467-8659.2008.01225.x
- G. Lafree, Using open source data to counter common myths about terrorism, in Criminologists on Terrorism and Homeland Security, Cambridge University Press, Cambridge, UK, 2011, pp. 411-442.
- K. Kis-Katos, H. Liebert, and G. G. Schulze, On the origin of domestic and international terrorism, Eur. J. Polit. Econ. 27 (2011), S17-S36. https://doi.org/10.1016/j.ejpoleco.2011.02.002
- START, Codebook: Inclusion criteria and variables, J. Educ. Stat. (2018), 453.
- G. LaFree and L. Dugan, Introducing the global terrorism database, Terrorism Polit. Violence 19 (2007), 181-204. https://doi.org/10.1080/09546550701246817
- Z. Li et al. Terrorist group behavior prediction by wavelet transform-based pattern recognition, Dis. Dynam. Nat. Soc. 2018 (2018), 1-16.
- G. LaFree and J. D. Freilich, Editor's introduction: Quantitative approaches to the study of terrorism, J. Quant. Criminol. 28 (2012), 1-5. https://doi.org/10.1007/s10940-011-9159-1
- E. L. Huamani, A. Mantari, and A. Roman-Gonzalez, Machine learning techniques to visualize and predict terrorist attacks worldwide using the global terrorism database, Int. J. Advan. Comp. Sci. Appl. 11 (2020), 563-570.
- Q. I. U. Lingfeng et al., Study on prediction of global terrorist attacks based on machine learning and fragile states index, J. Catastrophol. 34 (2019), 211-214.
- C. Verma, S. Malhotra, and V. Verma, Predictive modeling of terrorist attacks using machine learning, Int. J. Pure Appl. Math. 119 (2018), no. 15, 49-60.
- K. F. Widaman and R. P. McDonald, Factor analysis and related methods, J. Educ. Stat. 12 (1987), 308-313.
- B. Price, A first course in factor analysis, Technometrics 35 (1993), 453. https://doi.org/10.1080/00401706.1993.10485363
- J. G. Liu and P. J. Mason, Principal component analysis, in Essential Image Processing and GIS for Remote Sensing, Wiley, London, UK, 2009, pp. 77-90.
- L. A. Pasa et al., A contribution to the study of ensemble of self-organizing maps, Math. Prob. Eng. 2015 (2015), 1-10.
- H. F. Kaiser, The varimax criterion for analytic rotation in factor analysis, Psychometrika 23 (1958), 187-200. https://doi.org/10.1007/BF02289233