DOI QR코드

DOI QR Code

차세대 리튬이차전지용 고체 전해질 기술

Solid Electrolyte Technologies for Next-Generation Lithium Secondary Batteries

  • 발행 : 2021.06.01

초록

Technologies for lithium secondary batteries are now increasingly expanding to simultaneously improve the safety and higher energy and power densities of large-scale battery systems, such as electric vehicles and smart-grid energy storage systems. Next-generation lithium batteries, such as lithium-sulfur (Li-S) and lithium-air (Li-O2) batteries by adopting solid electrolytes and lithium metal anode, can be a solution for the requirements. In this analysis of battery technology trends, solid electrolytes, including polymer (organic), inorganic (oxides and sulfides), and their hybrid (composite) are focused to describe the electrochemical performance achievable by adopting optimal components and discussing the interfacial behaviors that occurred by the contact of different ingredients for safe and high-energy lithium secondary battery systems. As next-generation rechargeable lithium batteries, Li-S and Li-O2 battery systems are briefly discussed coupling with the possible use of solid electrolytes. In addition, Electronics and Telecommunications Research Institutes achievements in the field of solid electrolytes for lithium rechargeable batteries are finally introduced.

키워드

과제정보

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단 국가핵심소재연구단(플랫폼형) 사업의 지원을 받아 수행한 연구임[NRF-2020M3H4A3081880].

참고문헌

  1. EU Implementation Plan, "Integrated Strategic Energy Technology Plan (SET-Plan), Action 7: Become competitive in the global battery sector to drive E-mobility and stationary storage forward," 2016, 1.
  2. A. Varzi et al., "Current status and future perspectives of lithium metal batteries," J. Power Sources, vol. 480, 2020, Article no. 228803, doi: 10.1016/j.jpower.2020.228803.
  3. 김주미 외, "리튬이차전지용 고체 전해질의 최근 진전과 전망," 한국전기화학회지, vol. 22, 2019, pp. 87-103.
  4. Y. Zhao et al., "A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage," Chem. Soc. Rev., vol. 44, 2015, pp. 7968-7996, doi: 10.10339/c5cs00289c.
  5. R. Murugan et al., "Fast lithium ion conduction in garnet-type Li7La3Zr2O12," Angew. Chem. Intern. Ed., vol. 46, 2007, pp. 7778-7781, doi: 10.1002/anie.200701144.
  6. Q. Zhao et al., "Designing solid-electrolytes for safe, energy-dense batteries," Nat. Rev. Mater., vol. 5, 2020, pp. 229-252, doi: 10.1038/s41578-019-0165-5.
  7. N. Kamaya et al., "A lithium superionic conductor," Nat. Mater., vol. 10, 2011, pp. 682-686, doi: 10.1038 /nmat3066. https://doi.org/10.1038/nmat3066
  8. Y. Seino et al., "A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries," Energy Envir. Sci., vol. 7, 2014, pp. 627-631, doi: 10.1039/C3EE41655K.
  9. Y. Kato et al., "High-power all-solid-state batteries using sulfide superionic conductors," Nat. Energy, vol. 1, 2016, Article no. 16030, doi: 10.1039/nenergy.2016.30.
  10. Y.-G. Lee et al., "High-energy long-cycling all-solid-state lithium metal batteries enable by silver-carbon composite anodes," Nat. Energy, vol. 5, 2020, pp. 299-308, doi: 10.1038/s41560-020-0575-z.
  11. X. Zhang et al., "Synergistic coupling between Li6.25La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes," J. Am. Chem. Soc., vol. 139, 2017, pp. 13779-13785, doi: 10.1021/jacs.7606364.
  12. W. Liu et al., "Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires," Nat. Energy, vol. 2, 2017, Article no. 17035, doi: 10.1038/nenergy.2017.35.
  13. X.-B. Cheng et al., "Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anode," Chem, vol. 5, 2019, pp. 74-96, doi: 10.1016/j.chempr.2018.12.002.
  14. L. Xu et al., "Interfaces in solid-state lithium batteries," Joule, vol. 2, 2018, pp. 1991-2015, doi: 10.1016/j.joule.2018.07.009.
  15. X. Tao et al., "Solid-state lithium-sulfur batteries operatred at 37℃ with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer," Nano Lett., vol. 17, 2017, pp. 2967-2972, doi: 10.1021/acs.nanolett.7b000221.
  16. Y. Xiao et al., "Understanding interface stability in solid-state batteries," Nat. Rev. Mater., vol. 5, 2020, pp. 105-126, doi: 10.1038/s41578-019-0157-5.
  17. J. Haruyama et al., "Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery," Chem. Mater., vol. 26, 2014, pp. 4248-4255, doi: 10.1021/cm5016959.
  18. T. Li et al., "A comprehensive understanding of lithium-sulfur battery technology," Adv. Funct. Mater., vol. 29, 2019, Article no. 1901730, doi: 10.1002/adfm.201901730.
  19. Y. Luo et al., "Strategies for inhibiting anode dendrite growth in lithium-sulfur batteries," J. Mater. Chem. A, vol. 8, 2020, pp. 4629-4646, doi: 10.1039/C9TA12910C.
  20. J. Lu et al., "Aprotic and aqueous Li-O2 batteries," Chem. Rev., vol. 114, 2014, pp. 5611-5640, doi: 10.1021/cr400573b.
  21. J.Y. Kim et al., "Reversible thixotropic gel electrolytes for safer and shape-versatile lithium-ion batteries," J. Power Sources, vol. 401, 2018, pp. 126-134, doi: 10.1016/j.jpower.2018.08.098
  22. D.O. Shin et al., "Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction," Sci. Rep. vol. 5, 2015, Article no. 18053, doi: 10.1038/srep18053.
  23. J. Park et al., "Dimension-controlled solid oxide electrolytes for all-solid-state electrodes: Percolation pathways, specific contact area, and effective ion conductivity," Chem. Eng. J., vol. 391, 2020, Article no. 123528, doi: 10.1016/j.cej.2019.123528.
  24. M.J. Lee et al., "Interfacial barrier free organic-inorganic hybrid electrolyte for solid state batteries," Energy Storage Mater., vol. 37, 2021, pp. 306-314, doi: 10.1016/j.ensm.2021.02.013.