DOI QR코드

DOI QR Code

Food allergies and food-induced anaphylaxis: role of cofactors

  • Shin, Meeyong (Department of Pediatrics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University School of Medicine)
  • Received : 2020.06.23
  • Accepted : 2020.10.08
  • Published : 2021.08.15

Abstract

Food allergies and food-induced anaphylaxis are important health problems. Several cofactors modulating the onset of anaphylaxis have been identified. In the presence of cofactors, allergic reactions may be induced at lower doses of food allergens and/or become severe. Exercise and concomitant infections are well-documented cofactors of anaphylaxis in children. Other factors such as consumption of nonsteroidal anti-inflammatory drugs, alcohol ingestion, and stress have been reported. Cofactors reportedly play a role in approximately 30% of anaphylactic reactions in adults and 14%-18.3% in children. Food-dependent exercise-induced anaphylaxis (FDEIA) is the best-studied model of cofactor-induced anaphylaxis. Wheat-dependent exercise-induced anaphylaxis, the most common FDEIA condition, has been studied the most. The mechanisms of action of cofactors have not yet been fully identified. This review aims to educate clinicians on recent developments in the role of cofactors and highlight the importance of recognizing cofactors in food allergies and food-induced anaphylaxis.

Keywords

Acknowledgement

This work was supported by the Soonchunhyang University Research Fund.

References

  1. Lee SY, Ahn K, Kim J, Jang GC, Min TK, Yang HJ, et al. A multicenter retrospective case study of anaphylaxis triggers by age in Korean children. Allergy Asthma Immunol Res 2016;8:535-40. https://doi.org/10.4168/aair.2016.8.6.535
  2. Huang F, Chawla K, Jarvinen KM, Nowak-Wegrzyn A. Anaphylaxis in a New York City pediatric emergency department: triggers, treatments, and outcomes. J Allergy Clin Immunol 2012;129:162-8.e1-3. https://doi.org/10.1016/j.jaci.2011.09.018
  3. Muraro A, Roberts G, Worm M, Bilo MB, Brockow K, Fernandez Rivas M, et al. Anaphylaxis: guidelines from the European Academy of Allergy and Clinical Immunology. Allergy 2014;69:1026-45. https://doi.org/10.1111/all.12437
  4. Niggemann B, Beyer K. Factors augmenting allergic reactions. Allergy 2014;69:1582-7. https://doi.org/10.1111/all.12532
  5. Worm M, Scherer K, Kohli-Wiesner A, Rueff F, Mahler V, Lange L, et al. Food-induced anaphylaxis and cofactors - data from the anaphylaxis registry. Allergol Select 2017;1:21-7. https://doi.org/10.5414/ALX01401E
  6. Cardona V, Luengo O, Garriga T, Labrador-Horrillo M, Sala-Cunill A, Izquierdo A, et al. Co-factor-enhanced food allergy. Allergy 2012;67:1316-8. https://doi.org/10.1111/j.1398-9995.2012.02877.x.
  7. Wolbing F, Fischer J, Koberle M, Kaesler S, Biedermann T. About the role and underlying mechanisms of cofactors in anaphylaxis. Allergy 2013;68:1085-92. https://doi.org/10.1111/all.12193
  8. Uguz A, Lack G, Pumphrey R, Ewan P, Warner J, Dick J, et al. Allergic reactions in the community: a questionnaire survey of members of the anaphylaxis campaign. Clin Exp Allergy 2005;35:746-50. https://doi.org/10.1111/j.1365-2222.2005.02257.x
  9. Hompes S, Kohli A, Nemat K, Scherer K, Lange L, Rueff F, et al. Provoking allergens and treatment of anaphylaxis in children and adolescents--data from the anaphylaxis registry of German-speaking countries. Pediatr Allergy Immunol 2011;22:568-74. https://doi.org/10.1111/j.1399-3038.2011.01154.x
  10. Oropeza AR, Bindslev-Jensen C, Broesby-Olsen S, Kristensen T, Moller MB, Vestergaard H, et al. Patterns of anaphylaxis after diagnostic workup: A follow-up study of 226 patients with suspected anaphylaxis. Allergy 2017;72:1944-52. https://doi.org/10.1111/all.13207
  11. Versluis A, van Os-Medendorp H, Blom WM, Michelsen-Huisman AD, Castenmiller JJM, Noteborn H, et al. Potential cofactors in accidental food allergic reactions are frequently present but may not influence severity and occurrence. Clin Exp Allergy 2019;49:207-15. https://doi.org/10.1111/cea.13282
  12. Versluis A, van Os-Medendorp H, Kruizinga AG, Blom WM, Houben GF, Knulst AC. Cofactors in allergic reactions to food: physical exercise and alcohol are the most important. Immun Inflamm Dis 2016;4:392-400. https://doi.org/10.1002/iid3.120
  13. Dua S, Ruiz-Garcia M, Bond S, Durham SR, Kimber I, Mills C, et al. Effect of sleep deprivation and exercise on reaction threshold in adults with peanut allergy: a randomized controlled study. J Allergy Clin Immunol 2019;144:1584-94.e2. https://doi.org/10.1016/j.jaci.2019.06.038
  14. Matsuo H, Morimoto K, Akaki T, Kaneko S, Kusatake K, Kuroda T, et al. Exercise and aspirin increase levels of circulating gliadin peptides in patients with wheat-dependent exercise-induced anaphylaxis. Clin Exp Allergy 2005;35:461-6. https://doi.org/10.1111/j.1365-2222.2005.02213.x
  15. Fernandes RA, Regateiro F, Pereira C, Faria E, Pita J, Todo-Bom A, et al. Anaphylaxis in a food allergy outpatient department: one-year review. Eur Ann Allergy Clin Immunol 2018;50:81-8. https://doi.org/10.23822/eurannaci.1764-1489.45
  16. Christensen MJ, Eller E, Mortz CG, Brockow K, Bindslev-Jensen C. A multicenter retrospective case study of anaphylaxis triggers by age in Korean children. J Allergy Clin Immunol Pract 2019;7:114-21. https://doi.org/10.1016/j.jaip.2018.06.018
  17. Barg W, Medrala W, Wolanczyk-Medrala A. Exercise-induced anaphylaxis: an update on diagnosis and treatment. Curr Allergy Asthma Rep 2011;11:45-51. https://doi.org/10.1007/s11882-010-0150-y
  18. Moneret-Vautrin DA, Latarche C. Drugs as risk factors of food anaphylaxis in adults: a case-control study. Bull Acad Natl Med 2009;193:351-62;discussion 62-3.
  19. Bartra J, Araujo G, Munoz-Cano R. Interaction between foods and nonsteroidal anti-inflammatory drugs and exercise in the induction of anaphylaxis. Curr Opin Allergy Clin Immunol 2018;18:310-6. https://doi.org/10.1097/ACI.0000000000000461
  20. Christensen MJ, Eller E, Mortz CG, Brockow K, Bindslev-Jensen C. Exercise lowers threshold and increases severity, but wheat-dependent, exercise-induced anaphylaxis can be elicited at rest. J Allergy Clin Immunol Pract 2018;6:514-20. https://doi.org/10.1016/j.jaip.2017.12.023
  21. Karhu E, Forsgard RA, Alanko L, Alfthan H, Pussinen P, Hamalainen E, et al. Exercise and gastrointestinal symptoms: running-induced changes in intestinal permeability and markers of gastrointestinal function in asymptomatic and symptomatic runners. Eur J Appl Physiol 2017;117:2519-26. https://doi.org/10.1007/s00421-017-3739-1
  22. Yano H, Kato Y, Matsuda T. Acute exercise induces gastrointestinal leakage of allergen in lysozyme-sensitized mice. Eur J Appl Physiol 2002;87:358-64. https://doi.org/10.1007/s00421-002-0653-x
  23. Zuhl M, Schneider S, Lanphere K, Conn C, Dokladny K, Moseley P. Exercise regulation of intestinal tight junction proteins. Br J Sports Med 2014;48:980-6. https://doi.org/10.1136/bjsports-2012-091585
  24. Kohno K, Matsuo H, Takahashi H, Niihara H, Chinuki Y, Kaneko S, et al. Serum gliadin monitoring extracts patients with false negative results in challenge tests for the diagnosis of wheat-dependent exercise-induced anaphylaxis. Allergol Int 2013;62:229-38. https://doi.org/10.2332/allergolint.12-OA-0495
  25. Scherf KA, Lindenau AC, Valentini L, Collado MC, Garcia-Mantrana I, Christensen M, et al. Cofactors of wheat-dependent exercise-induced anaphylaxis do not increase highly individual gliadin absorption in healthy volunteers. Clin Transl Allergy 2019;9:19. https://doi.org/10.1186/s13601-019-0260-0
  26. Alam A, Neish A. Role of gut microbiota in intestinal wound healing and barrier function. Tissue Barriers 2018;6:1539595. https://doi.org/10.1080/21688370.2018.1539595
  27. Takiishi T, Fenero CIM, Camara NOS. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers 2017;5:e1373208. https://doi.org/10.1080/21688370.2017.1373208
  28. Peng L, Li ZR, Green RS, Holzman IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 2009;139:1619-25. https://doi.org/10.3945/jn.109.104638
  29. Du Z, Gao X, Yin J. Gut microbiome alterations in patients with wheat-dependent exercise-induced anaphylaxis. Int Immunopharmacol 2020;84:106557. https://doi.org/10.1016/j.intimp.2020.106557
  30. Barg W, Wolanczyk-Medrala A, Obojski A, Wytrychowski K, Panaszek B, Medrala W. Food-dependent exercise-induced anaphylaxis: possible impact of increased basophil histamine releasability in hyperosmolar conditions. J Investig Allergol Clin Immunol 2008;18:312-5.
  31. Staden U, Rolinck-Werninghaus C, Brewe F, Wahn U, Niggemann B, Beyer K. Specific oral tolerance induction in food allergy in children: efficacy and clinical patterns of reaction. Allergy 2007;62:1261-9. https://doi.org/10.1111/j.1398-9995.2007.01501.x
  32. Pascal M, Munoz-Cano R, Mila J, Sanz ML, Diaz-Perales A, Sanchez-Lopez J, et al. Nonsteroidal anti-inflammatory drugs enhance IgE-mediated activation of human basophils in patients with food anaphylaxis dependent on and independent of nonsteroidal anti-inflammatory drugs. Clin Exp Allergy 2016;46:1111-9. https://doi.org/10.1111/cea.12735
  33. Matsuo H, Yokooji T, Morita H, Ooi M, Urata K, Ishii K, et al. Aspirin augments IgE-mediated histamine release from human peripheral basophils via Syk kinase activation. Allergol Int 2013;62:503-11. https://doi.org/10.2332/allergolint.13-OA-0536
  34. Harada S, Horikawa T, Ashida M, Kamo T, Nishioka E, Ichihashi M. Aspirin enhances the induction of type I allergic symptoms when combined with food and exercise in patients with food-dependent exercise-induced anaphylaxis. Br J Dermatol 2001;145:336-9. https://doi.org/10.1046/j.1365-2133.2001.04329.x
  35. Pascal M, Munoz-Cano R, Reina Z, Palacin A, Vilella R, Picado C, et al. Lipid transfer protein syndrome: clinical pattern, cofactor effect and profile of molecular sensitization to plant-foods and pollens. Clin Exp Allergy 2012;42:1529-39. https://doi.org/10.1111/j.1365-2222.2012.04071.x
  36. Dona I, Perez-Sanchez N, Eguiluz-Gracia I, Munoz-Cano R, Bartra J, Torres MJ, et al. Progress in understanding hypersensitivity reactions to nonsteroidal anti-inflammatory drugs. Allergy 2020;75:561-75. https://doi.org/10.1111/all.14032
  37. Quiralte J, Blanco C, Castillo R, Delgado J, Carrillo T. Intolerance to nonsteroidal antiinflammatory drugs: results of controlled drug challenges in 98 patients. J Allergy Clin Immunol 1996;98:678-85. https://doi.org/10.1016/S0091-6749(96)70102-1
  38. Diesner SC, Knittelfelder R, Krishnamurthy D, Pali-Scholl I, Gajdzik L, Jensen-Jarolim E, et al. Dose-dependent food allergy induction against ovalbumin under acid-suppression: a murine food allergy model. Immunol Lett 2008;121:45-51. https://doi.org/10.1016/j.imlet.2008.08.006
  39. Lee S, Hess EP, Nestler DM, Bellamkonda Athmaram VR, Bellolio MF, Decker WW, et al. Antihypertensive medication use is associated with increased organ system involvement and hospitalization in emergency department patients with anaphylaxis. J Allergy Clin Immunol 2013;131:1103-8. https://doi.org/10.1016/j.jaci.2013.01.011
  40. Dave ND, Xiang L, Rehm KE, Marshall GD, Jr. Stress and allergic diseases. Immunol Allergy Clin North Am 2011;31:55-68. https://doi.org/10.1016/j.iac.2010.09.009
  41. Schreier HM, Wright RJ. Stress and food allergy: mechanistic considerations. Ann Allergy Asthma Immunol 2014;112:296-301. https://doi.org/10.1016/j.anai.2013.08.002
  42. Agostini S, Goubern M, Tondereau V, Salvador-Cartier C, Bezirard V, Leveque M, et al. A marketed fermented dairy product containing Bifidobacterium lactis CNCM I-2494 suppresses gut hypersensitivity and colonic barrier disruption induced by acute stress in rats. Neurogastroenterol Motil 2012;24:376-e172. https://doi.org/10.1111/j.1365-2982.2011.01865.x
  43. Saunders PR, Kosecka U, McKay DM, Perdue MH. Acute stressors stimulate ion secretion and increase epithelial permeability in rat intestine. Am J Physiol 1994;267:G794-9.
  44. Vanuytsel T, van Wanrooy S, Vanheel H, Vanormelingen C, Verschueren S, Houben E, et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 2014;63:1293-9. https://doi.org/10.1136/gutjnl-2013-305690
  45. Alonso C, Guilarte M, Vicario M, Ramos L, Rezzi S, Martinez C, et al. Acute experimental stress evokes a differential gender-determined increase in human intestinal macromolecular permeability. Neurogastroenterol Motil 2012;24:740-6, e348-9. https://doi.org/10.1111/j.1365-2982.2012.01928.x
  46. Larenas-Linnemann DE, Costa-Dominguez MDC, Creticos PS. Acute emotional stress proposed as a risk factor for anaphylaxis in patients receiving allergen immunotherapy. Ann Allergy Asthma Immunol 2020;124:314-7. https://doi.org/10.1016/j.anai.2020.01.006
  47. Coyle EF, Montain SJ. Benefits of fluid replacement with carbohydrate during exercise. Med Sci Sports Exerc 1992;24:S324-30.
  48. Anderson SD, Kippelen P. Airway injury as a mechanism for exercise-induced bronchoconstriction in elite athletes. J Allergy Clin Immunol 2008;122:225-35; quiz 36-7. https://doi.org/10.1016/j.jaci.2008.05.001
  49. Zong Y, Zhu S, Zhang S, Zheng G, Wiley JW, Hong S. Chronic stress and intestinal permeability: Lubiprostone regulates glucocorticoid receptor-mediated changes in colon epithelial tight junction proteins, barrier function, and visceral pain in the rodent and human. Neurogastroenterol Motil 2019;31:e13477. https://doi.org/10.1111/nmo.13477
  50. Kim KB, Kwak YS. Dehydration affects exercise-induced asthma and anaphylaxis. J Exerc Rehabil 2019;15:647-50. https://doi.org/10.12965/jer.1938470.235
  51. van Nieuwenhoven MA, Vriens BE, Brummer RJ, Brouns F. Effect of dehydration on gastrointestinal function at rest and during exercise in humans. Eur J Appl Physiol 2000;83:578-84. https://doi.org/10.1007/s004210000305