DOI QR코드

DOI QR Code

고무마운트와 동일한 형상 조건을 갖는 압전마운트의 진동저감 성능에 대한 실험적 비교 고찰

Experimental Comparison on Vibration Attenuation Performances of the Piezoelectric Mount in Same Geometric Constraints with the Rubber Mount

  • 한영민 (아주자동차대학 자동차계열)
  • Han, Young-Min (Division of Automotive Engineering, Ajou Motor College)
  • 투고 : 2021.09.14
  • 심사 : 2021.11.20
  • 발행 : 2021.11.28

초록

본 연구에서는 기존 고무마운트와 동일한 외부 형상을 갖는 능동마운트를 고안하고 진동절연 성능을 실험적으로 고찰하고자 한다. 압전작동기를 특징으로 하는 제안된 능동 마운트는 고성능 선박이나 자동차에서 사용되는 기계장치들의 진동을 절연하기 위해 적용될 수 있으며, 고무요소와 함께 구성되어 하이브리드 구조를 갖고 있다. 먼저 수동형 고무마운트의 동적 특성을 실험적으로 고찰하였으며, 고무마운트의 형상에 기초하여 능동형 마운트을 위한 고무요소가 제작되었고 2개의 스택형 압전작동기와 직렬로 연결함으로써 관성형 작동메커니즘을 구성하였다. 본 연구에서는 진동을 절연하기 위해 단순하면서도 현장 적용이 용이한 PID 제어기가 구성되어 비공진 고주파수 대역의 진동을 절연하기 위한 제어 실험에 적용되었다. 마지막으로 넓은 주파수 영역에서 진동제어 성능을 실험적으로 고찰하고 기존 고무마운트와 진동 절연 성능를 비교 평가하였다.

An active mount is devised in same geometric constraints with a conventional rubber mount. The proposed mount features the piezoelectric actuator which can be used to reduce the vibration at marine vessels or automotive vehicles. As a first step, a passive rubber mount is adopted and its dynamic characteristics are experimentally evaluated. Based on the geometry of the rubber mount, a rubber element for the active mount is manufactured and integrated with two piezostacks in series, in which the piezostack is operated as an inertial type of actuator. A conventional PID controller featured by the simple and easy implementation, is then designed to attenuate the non-resonant high frequency vibration transmitted from the base excitation. Finally, the control performances of a proposed active mount are evaluated in the wide frequency range and compared with those of the conventional rubber mount.

키워드

참고문헌

  1. Y. Yunhe, G. N. Nagi & V. D. Rao. (2001). A Literature Review of Automotive Vehicle Engine Mounting Systems. Mechanism and Machine Theory, 36, 123-142, DOI : 10.1016/S0094-114X(00)00023-9.
  2. W. H. Kim, W. H. Joo & D. H. Kim. (2012). Development of Stiffness Adjustable Mount for Vibration Control of Marine Diesel Generator Set. Proceedings of the KSNVE Annual Spring Conference, 89-92.
  3. G. Kim & R. Singh. (1995). A study of Passive and Adaptive Hydraulic Engine Mount Systems with Emphasis on Non-linear Characteristics. Journal of Sound and Vibration, 179(3), 427-453. DOI : 10.1006/jsvi.1995.0028.
  4. S. R. Hong & S. B. Choi. (2005). Vibration Control of a Structural System Using Magneto-rheological Fluid Mount. Journal of Intelligent Material System and Structures, 16(11-12), 931-936. DOI : 10.1177/1045389X05053917.
  5. E. W. Williams, S. G. Rigby, J. L. Sproston & R. Stanway. (1993). Electrorheological Fluids Applied to an Automotive Engine Mount. Journal of Non-Newtonian Fluid Mechanics, 47, 221-238. https://doi.org/10.1016/0377-0257(93)80052-D
  6. J. Y. Andrew and H. H. Colin. (1996). Control of Flexural Vibration in Stiffened Structures Using Multiple Piezoceramic Actuators. Applied Acoustics, 49(1), 17-48. DOI : 10.1016/0003-682X(96)00004-7
  7. K. Kowalczyk, F. Svaricek, C. Bohn & H. J. Karkosch. (2004). Active Control of Engine Induced Vibrations. International Conference on New Actuators, 275-278. DOI : 10.1016/j.conengprac.2003.09.008.
  8. C. Niezrecki, D. Brei, S. Balakrishnan & A. Moskalik. (2001). Piezoelectric Actuation: State of the Art. The Shock and Vibration Digest, 33(4), 269-280. https://doi.org/10.1177/058310240103300401
  9. S. S. Muhlen. (1990). Design of an Optimized High-power Ultrasonic Transducer. IEEE Ultrasonics Symposium, Honolulu, USA, 1631-1634. DOI : 10.1109/ULTSYM.1990.171645.
  10. F. X. Li, R. K. N. D. Rajapakse, D. Mumford & M. Gadala. (2008). Quasi-static Thermo-electro-mechanical Behaviour of Piezoelectric Stack Actuators. Smart Materials and Structures, 17(1), 1-10. DOI : 10.1088/0964-1726/17/1/015049.
  11. S. B. Choi & Y. M. Han. (2010). Piezoelectric Actuators: Control Applications of Smart Materials. CRC Press.
  12. T. Yu and Y. Zhai. (2014). HW/SW Co-design of a Visual Driver Drowsiness Detection System. Journal of Convergence for Information Technology, 4(1), 31-39. https://doi.org/10.22156/CS4SMB.2014.4.1.031
  13. J. H. Cho. (2021). A Study on Optimal PID Controller Design Ensure the Absolute Stability. Journal of Convergence for Information Technology, 11(2), 124-129. DOI : 10.22156/CS4SMB.2021.11.02.124.