DOI QR코드

DOI QR Code

Insight of cleaning, doping and defective effects on the graphene surface by using methanol

  • Received : 2020.07.13
  • Accepted : 2021.09.09
  • Published : 2021.12.25

Abstract

Graphene has attracted enormous interest to researchers because of its remarkable electrical, mechanical, and optical properties. Chemical vapor deposition (CVD) method was used to synthesize the graphene. The methanol (CH3OH) was used to investigate the cleaning, doping and defective effect in the graphene surface. The samples were characterized by X-ray diffraction patterns (XRD), field emission scanning electron microscope (FESEM) images, Xray photoelectron spectroscopy (XPS) measurements, and Raman spectroscopy. XRD indicates the introduction of oxygen in graphene layer. FESEM images of samples suggest the sheet like morphology. XPS measurements confirm the existence of large number of oxygen containing functional groups (C=O, COOH, and C-O) and C-C in the graphene surface. The Raman spectra confirm the n-doping and cleaning effects on graphene surface through the red shifts of G and 2D peaks. Furthermore, the optical images were used to observe the residues in graphene. The residues are obtained due to adsorption of CH3OH in graphene surface. Therefore, this work provides a simple and effective approach to investigate the cleaning, doping and defective effects on the surface of graphene using CH3OH solvent that can be applied in tunable electronic devices and gas sensor.

Keywords

References

  1. Bae, G., Cha, J., Lee, H., Park, W. and Park, N. (2012), "Effects of defects and non-coordinating molecular overlayers on the work function of graphene and energy-level alignment with organic molecules", Carbon, 50, 851-856. https://doi.org/10.1016/j.carbon.2011.09.044
  2. Berciaud, S., Han, M.Y., Mak, K.F., Brus, L.E., Kim, P. and Heinz, T.F. (2010), "Electron and optical phonon temperatures in electrically biased graphene", Phys. Rev. Lett., 104, 2-5. https://doi.org/10.1103/PhysRevLett.104.227401
  3. Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A.Y., Feng, R., Dai, Z., Alexei, N., Conrad, M.E.H., First, P.N. and De Heer, W.A. (2004), "Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics", J. Phys. Chem. B, 108, 19912-19916. https://doi.org/10.1021/jp040650f
  4. Cheng, Z., Zhou, Q., Wang, C., Li, Q., Wang, C. and Fang, Y. (2011), "Toward intrinsic graphene surfaces: A systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices", Nano Lett., 11, 767-771. https://doi.org/10.1021/nl103977d
  5. Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S. and Geim, A.K. (2006), "Raman spectrum of graphene and graphene layers", Phys. Rev. Lett., 97, 1-4. https://doi.org/10.1103/PhysRevLett.97.187401
  6. Geim, A.K. and Novoselov, K.S. (2009), The rise of graphene, in: Nanoscience and Technology, Macmillan Publishers Ltd., UK, pp. 11-19. https://doi.org/10.1142/9789814287005_0002
  7. Goniszewski, S., Gallop, J., Adabi, M., Gajewski, K., Shaforost, O., Klein, N., Sierakowski, A., Chen, J., Chen, Y., Gotszalk, T. and Hao, L. (2015), "Self-supporting graphene films and their applications", IET Circuits, Devices Syst., 9, 420-427. https://doi.org/10.1049/iet-cds.2015.0149
  8. Ibrahim, I., Lim, H.N., Huang, N.M. and Pandikumar, A. (2016), "Cadmium sulphide-reduced graphene oxidemodified photoelectrode-based photoelectrochemical sensing platform for copper(II) ions", PLoS One, 11, 1-18. https://doi.org/10.1371/journal.pone.0154557
  9. Jeong, H.K., Yun, P.L., Lahaye, R.J.W.E., Park, M.H., Kay, H.A., Ick, J.K., Yang, C.W., Chong, Y.P., Ruoff, R.S. and Young, H.L. (2008), "Evidence of graphitic AB stacking order of graphite oxides", J. Am. Chem. Soc., 130, 1362-1366. https://doi.org/10.1021/ja076473o
  10. Johra, F.T., Lee, J.W. and Jung, W.G. (2014), "Facile and safe graphene preparation on solution based platform", J. Ind. Eng. Chem., 20, 2883-2887. https://doi.org/10.1016/j.jiec.2013.11.022
  11. Kang, J., Shin, D., Bae, S. and Hong, B.H. (2012), "Graphene transfer: Key for applications", Nanoscale, 4, 5527-5537. https://doi.org/10.1039/c2nr31317k
  12. Kim, B.H., Hong, S.J., Baek, S.J., Jeong, H.Y., Park, N., Lee, M., Lee, S.W., Park, M., Chu, S.W., Shin, H.S., Lim, J., Lee, J.C., Jun, Y. and Park, Y.W. (2012), "N-type graphene induced by dissociative H2 adsorption at room temperature", Sci. Rep., 2, 1-6. https://doi.org/10.1038/srep00690
  13. Kwan, Y.C.G., Ng, G.M. and Huan, C.H.A. (2015), "Identification of functional groups and determination of carboxyl formation temperature in graphene oxide using the XPS O 1s spectrum", Thin Solid Films, 590, 40-48. https://doi.org/10.1016/j.tsf.2015.07.051
  14. Lee, Y., Bae, S., Jang, H., Jang, S., Zhu, S.-E., Sim, S.H., Song, Y. Il, Hong, B.H. and Ahn, J.-H. (2010), "Wafer-Scale Synthesis and Transfer of Graphene Films", Nano Lett., 10, 490-493. https://doi.org/10.1021/nl903272n
  15. Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L. and Ruoff, R.S. (2009a), "Large-area synthesis of high-quality and uniform graphene films on copper foils", Science, 324, 1312-1314. https://doi.org/10.1126/science.1171245
  16. Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Piner, R.D., Colomba, L. and Ruoff, R.S. (2009b), "Transfer of large-area graphene films for high-performance transparent conductive electrodes", Nano Lett., 9, 4359-4363. https://doi.org/10.1021/nl902623y
  17. Liang, X., Sperling, B.A., Calizo, I., Cheng, G., Hacker, C.A., Zhang, Q., Obeng, Y., Yan, K., Peng, H., Li, Q., Zhu, X., Yuan, H., Hight Walker, A.R., Liu, Z., Peng, L.M. and Richter, C.A. (2011), "Toward clean and crackless transfer of graphene", ACS Nano, 5, 9144-9153. https://doi.org/10.1021/nn203377t
  18. Lin, Y.C., Jin, C., Lee, J.C., Jen, S.F., Suenaga, K. and Chiu, P.W. (2011), "Clean transfer of graphene for isolation and suspension", ACS Nano, 5, 2362-2368. https://doi.org/10.1021/nn200105j
  19. Lindvall, N., Kalabukhov, A. and Yurgens, A. (2012), "Cleaning graphene using atomic force microscope", J. Appl. Phys., 111, 064904. https://doi.org/10.1063/1.3695451
  20. Liu, N., Chortos, A., Lei, T., Jin, L., Kim, T.R., Bae, W.G., Zhu, C., Wang, S., Pfattner, R., Chen, X., Sinclair, R. and Bao, Z. (2017), "Ultratransparent and stretchable graphene electrodes", Sci. Adv., 3, 1700159. https://doi.org/10.1126/sciadv.1700159
  21. Mavrikakis, M. and Barteau, M.A. (1998), "Oxygenate reaction pathways on transition metal surfaces", J. Mol. Catal. A Chem., 131, 135-147. https://doi.org/10.1016/S1381-1169(97)00261-6
  22. Narayanaswamy, V., Obaidat, I.M., Kamzin, A.S., Latiyan, S., Jain, S., Kumar, H., Srivastava, C., Alaabed, S. and Issa, B. (2019), "Synthesis of graphene oxide-Fe3O4 based nanocomposites using the mechanochemical method and in vitro magnetic hyperthermia", Int. J. Mol. Sci., 20, 3368. https://doi.org/10.3390/ijms20133368
  23. Novoselov, K.S. (2004), "Electric field effect in atomically thin carbon films", Science, 306, 666-669. https://doi.org/10.1126/science.1102896
  24. Park, J.H., Jung, W., Cho, D., Seo, J.T., Moon, Y., Woo, S.H., Lee, C., Park, C.Y. and Ahn, J.R. (2013), "Simple, green, and clean removal of a poly(methyl methacrylate) film on chemical vapor deposited graphene", Appl. Phys. Lett., 103, 1-5. https://doi.org/10.1063/1.4824877
  25. Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., Cancado, L.G., Jorio, A. and Saito, R. (2007), "Studying disorder in graphite-based systems by Raman spectroscopy", Phys. Chem. Chem. Phys., 9, 1276-1291. https://doi.org/10.1039/b613962k
  26. Pirkle, A., Chan, J., Venugopal, A., Hinojos, D., Magnuson, C.W., McDonnell, S., Colombo, L., Vogel, E.M., Ruoff, R.S. and Wallace, R.M. (2011), "The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2", Appl. Phys. Lett., 99, 2009-2012. https://doi.org/10.1063/1.3643444
  27. Qu, D., Li, F.Z., Zhang, H. Bin, Wang, Q., Zhou, T.L., Hu, C.F. and Xie, R.J. (2014), "Preparation of graphene nanosheets/copper composite by spark plasma sintering", Adv. Mater. Res., 833, 276-279. https://doi.org/10.4028/www.scientific.net/AMR.833.276
  28. Rai, K.B., Khadka, I.B., Kim, E.H., Ahn, S.J., Kim, H.W. and Ahn, J.R. (2018), "Influence of hydrophobicity on the chemical treatments of graphene", J. Korean Phys. Soc., 72, 107-110. https://doi.org/10.3938/jkps.72.107
  29. Reckinger, N., Felten, A., Santos, C.N., Hackens, B. and Colomer, J.F. (2013), "The influence of residual oxidizing impurities on the synthesis of graphene by atmospheric pressure chemical vapor deposition", Carbon, 63, 84-91. https://doi.org/10.1016/j.carbon.2013.06.042
  30. Schroder, E. (2013), "Methanol adsorption on graphene", J. Nanomater., 2013. https://doi.org/10.1155/2013/871706
  31. Soin, N., Roy, S.S., Lim, T.H. and McLaughlin, J.A.D. (2011), "Microstructural and electrochemical properties of vertically aligned few layered graphene (FLG) nanoflakes and their application in methanol oxidation", Mater. Chem. Phys., 129, 1051-1057. https://doi.org/10.1016/j.matchemphys.2011.05.063
  32. Suk, J.W., Lee, W.H., Lee, J., Chou, H., Piner, R.D., Hao, Y., Akinwande, D. and Ruoff, R.S. (2013), "Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue", Nano Lett., 13, 1462-1467. https://doi.org/10.1021/nl304420b
  33. Taghioskoui, M. (2009), "Trends in graphene research", Mater. Today, 12, 34-37. https://doi.org/10.1016/S1369-7021(09)70274-3
  34. Thomsen, C. and Reich, S. (2000), "Double resonant raman scattering in graphite", Phys. Rev. Lett., 85, 5214-5217. https://doi.org/10.1103/PhysRevLett.85.5214
  35. Tiwari, S.K., Sahoo, S., Wang, N. and Huczko, A. (2020), "Graphene research and their outputs: Status and prospect", J. Sci. Adv. Mater. Devices, 5, 10-29. https://doi.org/10.1016/j.jsamd.2020.01.006
  36. Wang, L., Song, Y., Wu, A., Li, Z., Zhang, B. and Wang, E. (2002), "Study of methanol adsorption on mica, graphite and ITO glass by using tapping mode atomic force microscopy", Appl. Surf. Sci., 199, 67-73. https://doi.org/10.1016/S0169-4332(02)00502-0
  37. Wong, K.L., Chuan, M.W., Chong, W.K., Alias, N.E., Hamzah, A., Lim, C.S. and Tan, M.L.P. (2019), "Modeling of low-dimensional pristine and vacancy incorporated graphene nanoribbons using tight binding model and their electronic structures", Adv. Nano Res., Int. J., 7(3), 207-219. https://doi.org/10.12989/anr.2019.7.3.207
  38. Wu, G., Tang, X., Meyyappan, M. and Lai, K.W.C. (2017), "Doping effects of surface functionalization on graphene with aromatic molecule and organic solvents", Appl. Surf. Sci., 425, 713-721. https://doi.org/10.1016/j.apsusc.2017.07.048
  39. Zeverdejani, M.K. and Beni, Y. (2020), "Effect of laminate configuration on the free vibration/buckling of FG Graphene/PMMA composites", Adv. Nano Res., Int. J., 8(2), 103-114. https://doi.org/https://doi.org/10.12989/anr.2020.8.2.103