References
- Bae, G., Cha, J., Lee, H., Park, W. and Park, N. (2012), "Effects of defects and non-coordinating molecular overlayers on the work function of graphene and energy-level alignment with organic molecules", Carbon, 50, 851-856. https://doi.org/10.1016/j.carbon.2011.09.044
- Berciaud, S., Han, M.Y., Mak, K.F., Brus, L.E., Kim, P. and Heinz, T.F. (2010), "Electron and optical phonon temperatures in electrically biased graphene", Phys. Rev. Lett., 104, 2-5. https://doi.org/10.1103/PhysRevLett.104.227401
- Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A.Y., Feng, R., Dai, Z., Alexei, N., Conrad, M.E.H., First, P.N. and De Heer, W.A. (2004), "Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics", J. Phys. Chem. B, 108, 19912-19916. https://doi.org/10.1021/jp040650f
- Cheng, Z., Zhou, Q., Wang, C., Li, Q., Wang, C. and Fang, Y. (2011), "Toward intrinsic graphene surfaces: A systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices", Nano Lett., 11, 767-771. https://doi.org/10.1021/nl103977d
- Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S. and Geim, A.K. (2006), "Raman spectrum of graphene and graphene layers", Phys. Rev. Lett., 97, 1-4. https://doi.org/10.1103/PhysRevLett.97.187401
- Geim, A.K. and Novoselov, K.S. (2009), The rise of graphene, in: Nanoscience and Technology, Macmillan Publishers Ltd., UK, pp. 11-19. https://doi.org/10.1142/9789814287005_0002
- Goniszewski, S., Gallop, J., Adabi, M., Gajewski, K., Shaforost, O., Klein, N., Sierakowski, A., Chen, J., Chen, Y., Gotszalk, T. and Hao, L. (2015), "Self-supporting graphene films and their applications", IET Circuits, Devices Syst., 9, 420-427. https://doi.org/10.1049/iet-cds.2015.0149
- Ibrahim, I., Lim, H.N., Huang, N.M. and Pandikumar, A. (2016), "Cadmium sulphide-reduced graphene oxidemodified photoelectrode-based photoelectrochemical sensing platform for copper(II) ions", PLoS One, 11, 1-18. https://doi.org/10.1371/journal.pone.0154557
- Jeong, H.K., Yun, P.L., Lahaye, R.J.W.E., Park, M.H., Kay, H.A., Ick, J.K., Yang, C.W., Chong, Y.P., Ruoff, R.S. and Young, H.L. (2008), "Evidence of graphitic AB stacking order of graphite oxides", J. Am. Chem. Soc., 130, 1362-1366. https://doi.org/10.1021/ja076473o
- Johra, F.T., Lee, J.W. and Jung, W.G. (2014), "Facile and safe graphene preparation on solution based platform", J. Ind. Eng. Chem., 20, 2883-2887. https://doi.org/10.1016/j.jiec.2013.11.022
- Kang, J., Shin, D., Bae, S. and Hong, B.H. (2012), "Graphene transfer: Key for applications", Nanoscale, 4, 5527-5537. https://doi.org/10.1039/c2nr31317k
- Kim, B.H., Hong, S.J., Baek, S.J., Jeong, H.Y., Park, N., Lee, M., Lee, S.W., Park, M., Chu, S.W., Shin, H.S., Lim, J., Lee, J.C., Jun, Y. and Park, Y.W. (2012), "N-type graphene induced by dissociative H2 adsorption at room temperature", Sci. Rep., 2, 1-6. https://doi.org/10.1038/srep00690
- Kwan, Y.C.G., Ng, G.M. and Huan, C.H.A. (2015), "Identification of functional groups and determination of carboxyl formation temperature in graphene oxide using the XPS O 1s spectrum", Thin Solid Films, 590, 40-48. https://doi.org/10.1016/j.tsf.2015.07.051
- Lee, Y., Bae, S., Jang, H., Jang, S., Zhu, S.-E., Sim, S.H., Song, Y. Il, Hong, B.H. and Ahn, J.-H. (2010), "Wafer-Scale Synthesis and Transfer of Graphene Films", Nano Lett., 10, 490-493. https://doi.org/10.1021/nl903272n
- Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L. and Ruoff, R.S. (2009a), "Large-area synthesis of high-quality and uniform graphene films on copper foils", Science, 324, 1312-1314. https://doi.org/10.1126/science.1171245
- Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Piner, R.D., Colomba, L. and Ruoff, R.S. (2009b), "Transfer of large-area graphene films for high-performance transparent conductive electrodes", Nano Lett., 9, 4359-4363. https://doi.org/10.1021/nl902623y
- Liang, X., Sperling, B.A., Calizo, I., Cheng, G., Hacker, C.A., Zhang, Q., Obeng, Y., Yan, K., Peng, H., Li, Q., Zhu, X., Yuan, H., Hight Walker, A.R., Liu, Z., Peng, L.M. and Richter, C.A. (2011), "Toward clean and crackless transfer of graphene", ACS Nano, 5, 9144-9153. https://doi.org/10.1021/nn203377t
- Lin, Y.C., Jin, C., Lee, J.C., Jen, S.F., Suenaga, K. and Chiu, P.W. (2011), "Clean transfer of graphene for isolation and suspension", ACS Nano, 5, 2362-2368. https://doi.org/10.1021/nn200105j
- Lindvall, N., Kalabukhov, A. and Yurgens, A. (2012), "Cleaning graphene using atomic force microscope", J. Appl. Phys., 111, 064904. https://doi.org/10.1063/1.3695451
- Liu, N., Chortos, A., Lei, T., Jin, L., Kim, T.R., Bae, W.G., Zhu, C., Wang, S., Pfattner, R., Chen, X., Sinclair, R. and Bao, Z. (2017), "Ultratransparent and stretchable graphene electrodes", Sci. Adv., 3, 1700159. https://doi.org/10.1126/sciadv.1700159
- Mavrikakis, M. and Barteau, M.A. (1998), "Oxygenate reaction pathways on transition metal surfaces", J. Mol. Catal. A Chem., 131, 135-147. https://doi.org/10.1016/S1381-1169(97)00261-6
- Narayanaswamy, V., Obaidat, I.M., Kamzin, A.S., Latiyan, S., Jain, S., Kumar, H., Srivastava, C., Alaabed, S. and Issa, B. (2019), "Synthesis of graphene oxide-Fe3O4 based nanocomposites using the mechanochemical method and in vitro magnetic hyperthermia", Int. J. Mol. Sci., 20, 3368. https://doi.org/10.3390/ijms20133368
- Novoselov, K.S. (2004), "Electric field effect in atomically thin carbon films", Science, 306, 666-669. https://doi.org/10.1126/science.1102896
- Park, J.H., Jung, W., Cho, D., Seo, J.T., Moon, Y., Woo, S.H., Lee, C., Park, C.Y. and Ahn, J.R. (2013), "Simple, green, and clean removal of a poly(methyl methacrylate) film on chemical vapor deposited graphene", Appl. Phys. Lett., 103, 1-5. https://doi.org/10.1063/1.4824877
- Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., Cancado, L.G., Jorio, A. and Saito, R. (2007), "Studying disorder in graphite-based systems by Raman spectroscopy", Phys. Chem. Chem. Phys., 9, 1276-1291. https://doi.org/10.1039/b613962k
- Pirkle, A., Chan, J., Venugopal, A., Hinojos, D., Magnuson, C.W., McDonnell, S., Colombo, L., Vogel, E.M., Ruoff, R.S. and Wallace, R.M. (2011), "The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2", Appl. Phys. Lett., 99, 2009-2012. https://doi.org/10.1063/1.3643444
- Qu, D., Li, F.Z., Zhang, H. Bin, Wang, Q., Zhou, T.L., Hu, C.F. and Xie, R.J. (2014), "Preparation of graphene nanosheets/copper composite by spark plasma sintering", Adv. Mater. Res., 833, 276-279. https://doi.org/10.4028/www.scientific.net/AMR.833.276
- Rai, K.B., Khadka, I.B., Kim, E.H., Ahn, S.J., Kim, H.W. and Ahn, J.R. (2018), "Influence of hydrophobicity on the chemical treatments of graphene", J. Korean Phys. Soc., 72, 107-110. https://doi.org/10.3938/jkps.72.107
- Reckinger, N., Felten, A., Santos, C.N., Hackens, B. and Colomer, J.F. (2013), "The influence of residual oxidizing impurities on the synthesis of graphene by atmospheric pressure chemical vapor deposition", Carbon, 63, 84-91. https://doi.org/10.1016/j.carbon.2013.06.042
- Schroder, E. (2013), "Methanol adsorption on graphene", J. Nanomater., 2013. https://doi.org/10.1155/2013/871706
- Soin, N., Roy, S.S., Lim, T.H. and McLaughlin, J.A.D. (2011), "Microstructural and electrochemical properties of vertically aligned few layered graphene (FLG) nanoflakes and their application in methanol oxidation", Mater. Chem. Phys., 129, 1051-1057. https://doi.org/10.1016/j.matchemphys.2011.05.063
- Suk, J.W., Lee, W.H., Lee, J., Chou, H., Piner, R.D., Hao, Y., Akinwande, D. and Ruoff, R.S. (2013), "Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue", Nano Lett., 13, 1462-1467. https://doi.org/10.1021/nl304420b
- Taghioskoui, M. (2009), "Trends in graphene research", Mater. Today, 12, 34-37. https://doi.org/10.1016/S1369-7021(09)70274-3
- Thomsen, C. and Reich, S. (2000), "Double resonant raman scattering in graphite", Phys. Rev. Lett., 85, 5214-5217. https://doi.org/10.1103/PhysRevLett.85.5214
- Tiwari, S.K., Sahoo, S., Wang, N. and Huczko, A. (2020), "Graphene research and their outputs: Status and prospect", J. Sci. Adv. Mater. Devices, 5, 10-29. https://doi.org/10.1016/j.jsamd.2020.01.006
- Wang, L., Song, Y., Wu, A., Li, Z., Zhang, B. and Wang, E. (2002), "Study of methanol adsorption on mica, graphite and ITO glass by using tapping mode atomic force microscopy", Appl. Surf. Sci., 199, 67-73. https://doi.org/10.1016/S0169-4332(02)00502-0
- Wong, K.L., Chuan, M.W., Chong, W.K., Alias, N.E., Hamzah, A., Lim, C.S. and Tan, M.L.P. (2019), "Modeling of low-dimensional pristine and vacancy incorporated graphene nanoribbons using tight binding model and their electronic structures", Adv. Nano Res., Int. J., 7(3), 207-219. https://doi.org/10.12989/anr.2019.7.3.207
- Wu, G., Tang, X., Meyyappan, M. and Lai, K.W.C. (2017), "Doping effects of surface functionalization on graphene with aromatic molecule and organic solvents", Appl. Surf. Sci., 425, 713-721. https://doi.org/10.1016/j.apsusc.2017.07.048
- Zeverdejani, M.K. and Beni, Y. (2020), "Effect of laminate configuration on the free vibration/buckling of FG Graphene/PMMA composites", Adv. Nano Res., Int. J., 8(2), 103-114. https://doi.org/https://doi.org/10.12989/anr.2020.8.2.103