과제정보
The authors are grateful for the financial support received from the formation mechanism and Countermeasures of "the belt and road" power investment project safety cost (17BGL010).
참고문헌
- Bhattacharyya, S., Ghosh, A. and Basu, B. (2017), "Nonlinear modeling and validation of air spring effects in a sealed tuned liquid column damper for structural control", J. Sound Vib., 410, 269-286. https://doi.org/10.1016/j.jsv.2017.07.046.
- Cao, L. and Chen, Y. (2020), "A simplified method for determining the acceleration amplitudes of long-span floor system under walking/running loads", Struct. Eng. Mech., 75(3), 377-387. https://doi.org/10.12989/sem.2020.75.3.377.
- Cao, L., Liu, J., Zhang, X. and Chen, Y.F. (2019), "Numerical study on the walking load based on inverted-pendulum model", Struct. Eng. Mech., 71(3), 245-255. https://doi.org/10.12989/sem.2019.71.3.245.
- Caprani, C.C., Keogh, J., Archbold, P. and Fanning, P. (2012), "Enhancement factors for the vertical response of footbridges subjected to stochastic crowd loading", Comput. Struct., 102-103, 87-96. https://doi.org/10.1016/j.compstruc.2012.03.006.
- Casado, C.M., Diaz, I.M., de Sebastian, J., Poncela, A.V. and Lorenzana, A. (2013), "Implementation of passive and active vibration control on an in-service footbridge", Struct. Contr. Health Monit., 20(1), 70-87. https://doi.org/10.1002/stc.471.
- Chen, J.J., Yin, Z.H., Yuan, X.J., Qiu, G.Q., Guo, K.H. and Wang, X.L. (2021), "A refined stiffness model of rolling lobe air spring with structural parameters and the stiffness characteristics of rubber bellows", Measure., 169, 108355. https://doi.org/10.1016/j.measurement.2020.108355.
- Cong, P., Magee, A. and Zhang, T. (2019), "Efficient calculation of the hydrodynamic coefficients and dynamic stiffness of an air-spring type vibration absorber", Ocean Eng., 192, 106550. https://doi.org/10.1016/j.oceaneng.2019.106550.
- Den, H. (1985), Mechanical Vibrations, McGraw-Hill/Dover: New York, NY, USA.
- Eason, R.P., Sun, C., Dick, A.J. and Nagarajaiah, S. (2013), "Attenuation of a linear oscillator using a nonlinear and a semi-active tuned mass damper in series", J. Sound Vib., 332, 154-166. https://doi.org/10.1016/j.jsv.2012.07.048.
- Ferreira, F. and Simoes, L. (2019), "Least cost design of curved cable-stayed footbridges with control devices-Sciencedirect", Struct., 19, 68-83. https://doi.org/10.1016/j.istruc.2018.12.004.
- Ferreira, F., Moutinho, C., Cunha, A . and Caetano, E. (2019), "Use of semi-active tuned mass dampers to control footbridges subjected to synchronous lateral excitation", J. Sound Vib., 446, 176-194. https://doi.org/10.1016/j.jsv.2019.01.026.
- Han, C., Choi, S.B., Lee, Y.S., Kim, H.T. and Kim, C.H. (2018), "A new hybrid mount actuator consisting of air spring and magneto-rheological damper for vibration control of a heavy precision stage", Sensor. Actuator. A, 284, 42-51. https://doi.org/10.1016/j.sna.2018.10.020.
- He, W. and Xie, W.P. (2018), "Characterization of stationary and walking people on vertical dynamic properties of a lively lightweight bridge", Struct. Control Hlth. Monit., 25(3), 1-24. https://doi.org/10.1002/stc.2123.
- Huang, H., Chang, W.S. and Mosalam, K.M. (2017), "Feasibility of shape memory alloy in a tuneable mass damper to reduce excessive in-service vibration", Struct. Control Hlth. Monit., 24(2), e1858. https://doi.org/10.1002/stc.1858.
- Ingolfsson, E.T., Georgakis, C.T. and Jnsson, J. (2012), "Pedestrian-induced lateral vibrations of footbridges: A literature review", Eng. Struct., 45(15), 21-52. https://doi.org/10.1016/j.engstruct.2012.05.038.
- Lai, E., Gentile, C. and Mulas, M.G. (2017), "Experimental and numerical serviceability assessment of a steel suspension footbridge", J. Constr. Steel Res., 132, 16-28. https://doi.org/10.1016/j.jcsr.2017.01.005.
- Lee, K., Lee, S.H., Kim, G.C. and Woo, S.S. (2014), "Global vertical resonance phenomenon between steel building and human rhythmic excitations", J. Constr. Steel Res., 92, 164-174. https://doi.org/10.1016/j.jcsr.2013.09.001.
- Li, Y., He, L., Shuai, C.G. and Wang, C.Y. (2017), "Improved hybrid isolator with maglev actuator integrated in air spring for active-passive isolation of ship machinery vibration", J. Sound Vib., 407, 226-239. https://doi.org/10.1016/j.jsv.2017.07.007.
- Lu, X., Ding, K., Shi, W. and Weng, D. (2012), "Tuned mass dampers for human-induced vibration control of the expo culture centre at the world expo 2010 in shanghai, China", Struct. Eng. Mech., 43(5), 607-621. https://doi.org/10.12989/sem.2012.43.5.607.
- Lu, Z., Chen, X., Li, X. and Li, P. (2017), "Optimization and application of multiple tuned mass dampers in the vibration control of pedestrian bridges", Struct. Eng. Mech., 62(1), 55-64. https://doi.org/10.12989/sem.2017.62.1.055.
- Moutinho, C., Cunha, A ., Caetano, E. and De Carvalho, J.M. (2018), "Vibration control of a slender footbridge using passive and semiactive tuned mass dampers", Struct. Control Hlth. Monit., 25(9), e2208. https://doi.org/10.1002/stc.2208.
- Nagarajaiah, S. (2010), "Adaptive passive, semiactive, smart tuned mass dampers: identification and control using empirical mode decomposition, hilbert transform, and short-term fourier transform", Struct. Control Hlth. Monit., 16(7-8), 800-841. https://doi.org/10.1002/stc.349.
- Nagarajaiah, S. and Sonmez, E. (2007), "Structures with semiactive variable stiffness single/multiple tuned mass dampers", J. Struct. Eng., 133(1), 67-77. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:1(67).
- Nagarajaiah, S. and Varadarajan, N. (2005), "Short time fourier transform algorithm for wind response control of buildings with variable stiffness TMD", Eng. Struct., 27(3), 431-441. https://doi.org/10.1016/j.engstruct.2004.10.015.
- Nakamura, S. and Kawasaki, T. (2006), "Lateral vibration of footbridges by synchronous walking", J. Constr. Steel Res., 62(11), 1148-1160. https://doi.org/10.1016/j.jcsr.2006.06.023.
- Nakamura, S. and Kawasaki, T. (2009), "A method for predicting the lateral girder response of footbridges induced by pedestrians", J. Constr. Steel Res., 65(8-9), 1705-1711. https://doi.org/10.1016/j.jcsr.2009.03.003.
- Racic, V. and Brownjohn, J. (2012), "Mathematical modelling of random narrow band lateral excitation of footbridges due to pedestrians walking", Comput. Struct., 90-91, 116-130. https://doi.org/10.1016/j.compstruc.2011.10.002.
- Service d'Etudes Techniques des Routes et Autoroutes (SETRA) (2006), "Footbridges-Assessment of vibrational behavior of footbridges under pedestrian loading", Technical Guide, Paris.
- Setareh, M., Ritchey, J.K., Murray, T.M., Koo, J.H. and Ahmadian, M. (2007), "Semiactive tuned mass damper for floor vibration control", J. Struct. Eng., 133(2), 242-250. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:2(242).
- Shi, W., Wang, L. and Lu, Z. (2018), "Study on self-adjustable tuned mass damper with variable mass", Struct. Control Hlth. Monit., 25(3), 1-16. https://doi.org/10.1002/stc.2114.
- Shi, W., Wang, L., Lu, Z. and Wang, H. (2019), "Experimental and numerical study on adaptive-passive variable mass tuned mass damper", J. Sound Vib., 452, 97-111. https://doi.org/10.1016/j.jsv.2019.04.008.
- Sonmez, E., Nagarajaiah, S., Sun, C. and Basu, B. (2016), "A study on semi-active Tuned Liquid Column Dampers (sTLCDs) for structural response reduction under random excitations", J. Sound Vib., 362, 1-15. https://doi.org/10.1016/j.jsv.2015.09.020.
- Soria, J., Diaz, I. and Garcia-Palacios, J. (2017), "Vibration control of a time-varying modal-parameter footbridge: study of semi-active implementable strategies", Smart Struct. Syst., 20(5), 525-537. https://doi.org/10.12989/sss.2017.20.5.525.
- Spencer, B. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng., 129(7), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845).
- Sun, C. (2018a), "Mitigation of offshore wind turbine responses under wind and wave loading: Considering soil effects and damage", Struct Control Hlth. Monit., 25(3), e2117. https://doi.org/10.1002/stc.2117.
- Sun, C. (2018b), "Semi-active control of monopile offshore wind turbines under multi-hazards", Mech. Syst. Signal Pr., 99, 285-305. https://doi.org/10.1016/j.ymssp.2017.06.016.
- Sun, C. and Nagarajaiah, S. (2014), "Study on semi-active tuned mass damper with variable damping and stiffness under seismic excitations", Struct. Control Hlth. Monit., 21(6), 890-906. https://doi.org/10.1002/stc.1620.
- Sun, C., Eason, R.P., Nagarajaiah, S. and Dick, A.J. (2013), "Hardening Duffing oscillator attenuation using a nonlinear TMD, a semi-active TMD and multiple TMD", J. Sound Vib., 332, 674-686. https://doi.org/10.1016/j.jsv.2012.10.016.
- Sun, C., Nagarajaiah, S. and Dick, A.J. (2014), "Family of smart tuned mass dampers with variable frequency under harmonic excitations and ground motions: closed-form evaluation", Smart Struct. Syst., 13(2), 319-341. http://doi.org/10.12989/sss.2014.13.2.319.
- Wang, C., Chang, W.S., Yan, W. and Huang, H. (2021), "Predicting the human-induced vibration of cross laminated timber floor under multi-person loadings", Struct., 29, 65-78. https://doi.org/10.1016/j.istruc.2020.10.074.
- Wang, J. and Chen, J. (2017), "A comparative study on different walking load models", Struct. Eng. Mech., 63(6), 847-856. https://doi.org/10.12989/sem.2017.63.6.847.
- Wang, L., Nagarajaiah, S., Shi, W. and Zhou, Y. (2020a), "Study on adaptive-passive eddy current pendulum tuned mass damper for wind-induced vibration control", Struct. Des. Tall Spec. Build., 29(15), e1793. https://doi.org/10.1002/tal.1793.
- Wang, L., Nagarajaiah, S., Shi, W. and Zhou, Y. (2021), "Semiactive control of walking-induced vibrations using adaptive tuned mass damper considering human-structure-interaction", Eng. Struct., 244, 112743. https://doi.org/10.1016/j.engstruct.2021.112743.
- Wang, L., Shi, W. and Zhou, Y. (2019b), "Study on self-adjustable variable pendulum tuned mass damper", Struct. Des. Tall Spec. Build., 28(1), e1561. https://doi.org/10.1002/tal.1561.
- Wang, L., Shi, W., Li, X., Zhang, Q. and Zhou, Y. (2019a), "An adaptive-passive retuning device for a pendulum tuned mass damper considering mass uncertainty and optimum frequency", Struct. Control Hlth. Monit., 26(7), e2377. https://doi.org/10.1002/stc.2377.
- Wang, L., Shi, W., Zhang, Q. and Zhou, Y. (2020b), "Study on adaptive-passive multiple tuned mass damper with variable mass for a large-span floor structure", Eng. Struct., 209, 110010. https://doi.org/10.1016/j.engstruct.2019.110010.
- Wang, L., Shi, W., Zhou, Y. and Zhang, Q. (2020c), "Semi-active eddy current pendulum tuned mass damper with variable frequency and damping", Smart Struct. Syst., 25(1), 65-80. https://doi.org/10.12989/sss.2020.25.1.065.
- Wang, X., Pereira, E., Diaz, I.M. and Garcia-Palacios, J.H. (2018), "Velocity feedback for controlling vertical vibrations of pedestrian-bridge crossing. practical guidelines", Smart Struct. Syst., 22(1), 95-103. https://doi.org/10.12989/sss.2018.22.1.095.
- White, R.E., Alexander, N.A., Macdonald, J. and Bocian, M. (2020), "Characterisation of crowd lateral dynamic forcing from full-scale measurements on the clifton suspension bridge", Struct., 24, 415-425. https://doi.org/10.1016/j.istruc.2019.11.012.
- Wieczorek, N., Gerasch, W., Rolfes, R. and Kammerer, H. (2014), "Semiactive friction damper for lightweight pedestrian bridges", J. Struct. Eng., 140(4), 04013102. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000880.
- Zhang, H.Y., Chen, Z.Q., Hua, X.G., Huang, Z.W. and Niu, H.W. (2020), "Design and dynamic characterization of a large-scale eddy current damper with enhanced performance for vibration control", Mech. Syst. Signal Pr., 145, 106879. https://doi.org/10.1016/j.ymssp.2020.106879.
- Zhu, H., Yang, J., Zhang, Y. and Feng, X (2017), "A novel air spring dynamic model with pneumatic thermodynamics, effective friction and viscoelastic damping", J. Sound Vib., 408, 87-104. https://doi.org/10.1016/j.jsv.2017.07.015.
- Zhu, Q., Hui, X., Du, Y. and Zhang, Q. (2019), "A full path assessment approach for vibration serviceability and vibration control of footbridges", Struct. Eng. Mech., 70(6), 765-779. https://doi.org/10.12989/sem.2019.70.6.765.
- Zhu, Q., Liu, K., Liu, L., Du, Y. and Zivanovic, S. (2020), "Experimental and numerical analysis on serviceability of cantilevered floor based on human-structure interaction", J. Constr. Steel Res., 173, 106184. https://doi.org/10.1016/j.jcsr.2020.106184.