DOI QR코드

DOI QR Code

Experimental evaluation of fatigue strength for small diameter socket welded joints under vibration loading condition

  • 투고 : 2020.11.25
  • 심사 : 2021.05.28
  • 발행 : 2021.11.25

초록

To investigate how the fabrication and repair of socket welded joints could be used to enhance fatigue resistance under vibration condition, experimental test data of installation conditions that potentially influence fatigue strength were analyzed with the S-N curve. It was found that the decreasing fatigue strength of stainless steel socket welded joints was attributed to the effect of high heat input of welding process. The effect of welding method, slip-on gap and radial-gap conditions on fatigue strength was insignificant. The test data of repair technique application, 2 × 1 leg length and of socket weld overlay, clearly showed higher fatigue strength but there was a limitation for higher stress region because of the weld toe crack.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2019M2D2A2048296) and the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety(KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea. (No. 1805005).

참고문헌

  1. ASME, 'Class 1 Components', ASME Boiler and Pressure Vessel Code Sec. III NB, 2013.
  2. Y.H. Choi, S.Y. Choi, Safety evaluation of socket weld integrity in nuclear piping, Key Eng. Mater. 270-273 (2004) 1725-1730. https://doi.org/10.4028/www.scientific.net/KEM.270-273.1725
  3. Y.H. Choi, S.Y. Choi, Socket weld integrity in nuclear piping under fatigue loading condition, Nucl. Eng. Des. 237 (2007) 213-218. https://doi.org/10.1016/j.nucengdes.2006.06.005
  4. Y.H. Choi, S.Y. Choi, Assessment of socket weld integrity in pipings, J. Loss Prev. Process. Ind. 22 (2009) 850-853. https://doi.org/10.1016/j.jlp.2008.08.003
  5. OPDE Database, OECD Piping Failure Data Exchange (OPDE) Project, 2002.
  6. M. Higuchi, A. Nakagawa, K. Lida, M. Hayashi, T. Yamauchi, M. Saito, M. Sato, Fatigue Strength of Socket Welded Pipe Joints, ASME PVP, 1995.
  7. M. Higuchi, A. Nakagawa, K. Lida, M. Hayashi, T. Yamauchi, M. Saito, M. Sato, Experimental study on fatigue strength of small-diameter socket-welded pipe joints, J. Pressure Vessel Technol. 120 (1998) 149-156. https://doi.org/10.1115/1.2842233
  8. EPRI, Vibration Fatigue of Small Bore Socket-Welds, TR-107455, EPRI, Palo Alto, CA, USA, 1997.
  9. EPRI, Vibration Fatigue Testing of Socket Welds, TR-113890, EPRI, Palo Alto, CA, USA, 1999.
  10. J.J. Xiu, H.Y. Jing, Y.D. Han, L. Zhao, Effects of radial gaps and penetration depth on vibration fatigue behaviour of 304L stainless steel piping with socket weld, Mater. Sci. Tech. Lond. 28 (7) (2013) 850-856. https://doi.org/10.1179/1743284712Y.0000000020
  11. J.J. Xiu, H.Y. Jing, Y.D. Han, L. Zhao, L. Xu, Effect of groove on socket welds under the condition of vibration fatigue, J. Nucl. Mater. 433 (2013) 10-16. https://doi.org/10.1016/j.jnucmat.2012.08.051
  12. EPRI, Vibration Fatigue Testing of Overlay-Repaired Cracked Socket Welds, TR-1003689, Revision 1, EPRI, Palo Alto, CA, USA, 2003.
  13. EPRI, Socket Weld Resolution Guideline, TR-1003452, Revision 1, EPRI, Palo Alto, CA, USA, 2009.
  14. ASME Code Case N-666, Reinforcement of Class 1, 2, and 3 Socket Welded Connections, ASME Boiler and Pressure Vessel Code Section XI, (New York).
  15. D.N. Hopkins, D.J. Benac, Investigation of fatigue-induced socket-welded joint failures for small-bore piping used in power plants, J. Fail. Anal. Prev. 1 (2001) 71-82. https://doi.org/10.1007/BF02715165
  16. J.A. Bannantine, J.J. Comer, J.L. Handrock, Fundamentals of Metal Fatigue Analysis, 1990.
  17. R.O. Ritchie, Mechanisms of fatigue-crack propagation in ductile and brittle solids, Int. J. Fract. 100 (1999) 55-83. https://doi.org/10.1023/A:1018655917051
  18. C. Bathias, A. Pineau, Fatigue of Materials and Structures, 2013.
  19. U. Krupp, O. Duber, H.-J. Christ, B. Kunkler, A. Schck, C.-P. Fritzen, Application of the EBSD technique to describe the initiation and growth behavior of microstructurally short fatigue cracks in a duplex steel, J. Microsc-Oxford 213 (2003) 313-320.
  20. M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Orientation gradients geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Mater. Sci. Eng. 527 (2010) 2738-2746. https://doi.org/10.1016/j.msea.2010.01.004