DOI QR코드

DOI QR Code

Fatigue life evaluation of socket welded pipe with incomplete penetration defect: I-test and FE analysis

  • Lee, Dong-Min (Global Institute of Technology, KEPCO Plant Service & Engineering) ;
  • Kim, Seung-Jae (Central Research Institute, Korea Hydro & Nuclear Power Co.) ;
  • Lee, Hyun-Jae (Mechanical Engineering, Korea Military Academy) ;
  • Kim, Yun-Jae (Mechanical Engineering, Korea University)
  • 투고 : 2021.01.28
  • 심사 : 2021.05.28
  • 발행 : 2021.11.25

초록

This paper presents experimental and numerical analysis results regarding the effects of an incomplete penetration defect on the fatigue lives of socket welded pipes. For the experiment, four-point bending fatigue tests with various defect geometries (defect depth and circumferential length) were performed, and test results are presented in terms of stress-life data. The results showed that for circumferentially short defects, the fatigue life tends to increase with increasing crack depth, but for longer defects, the trend becomes the opposite. Finite element analysis showed that for short defects, the maximum principal stress decreases with increases in crack depth. For a longer defect, the opposite trend was found. Furthermore, the maximum principal stress tends to increase with an increase in defect length regardless of the defect depth.

키워드

참고문헌

  1. EPRI Fatigue Management Handbook, EPRI, Palo Alto, CA, 1994, pp. V2-V3. TR-104534-V1.
  2. Vibration Fatigue of Small Bore Socket-Welded Pipe Joints, EPRI, Palo Alto, CA, 1997. TR-107455.
  3. USNRC, Initiating Events at U.S. Nuclear Power Plants: 1987-1995, NUREG/CR-5250, 1998.
  4. K. Iida, F. Matsuda, M. Sato, M. Nayama, N. Akimoto, Study on crack generation at root of socket welds, Nucl. Eng. Des. 166 (1996) 85-98. https://doi.org/10.1016/0029-5493(96)01241-1
  5. Y.H. Choi, S.Y. Choi, N.S. Huh, Fatigue evaluation for the socket weld in nuclear power plants, Corrosion Science and Technology 3 (2004) 216-221.
  6. Y.H. Choi, S.Y. Choi, J.S. Kim, Surface crack behavior in socket weld of nuclear piping under fatigue loading condition, Key Eng. Mater. 297-300 (2005) 1678-1684. https://doi.org/10.4028/www.scientific.net/KEM.297-300.1678
  7. Y.H. Choi, S.Y. Choi, Socket weld integrity in nuclear piping under fatigue loading condition, Nucl. Eng. Des. 237 (2007) 213-218. https://doi.org/10.1016/j.nucengdes.2006.06.005
  8. D.N. Hopkins, D.J. Benac, Investigation of fatigue-induced socket-welded joint failures for small-bore piping used in power plants, Practical Fail. Anal. 1 (2001) 71-82. https://doi.org/10.1007/BF02715165
  9. C.S. Kim, S.W. Oh, I.K. Park, Diagnosis and monitoring of socket welded pipe damaged by bending fatigue using acoustic emission technique, Journal of the Korean Society for Nondestructive Testing 28 (2008) 323-330.
  10. M. Higuchi, A. Nakagawa, M. Hayashi, T. Yamauchi, M. Saito, K. Iida, F. Matsuda, M. Sato, A study of fatigue strength reduction factor for small diameter socket welded pipe joints, ASME PVP 338-1 (1996).
  11. M. Higuchi, A. Nakagawa, K. lida, M. Hayashi, T. Yamauchi, M. Saito, M. Sato, Experimental study on fatigue strength of small-diameter socket welded pipe joints, J. Pressure Vessel Technol. 120 (1998) 149-156. https://doi.org/10.1115/1.2842233
  12. M. Iwata, S. Noguchi, M. Shibayama, M. Matuura, Fatigue properties of socketweld-jointed pipes: analysis of the fatigue life using fracture mechanics, Transactions of the Japan Society of Mechanical Engineers Series A 64 (1998) 264-270. https://doi.org/10.1299/kikaia.64.264
  13. S.H. Crandall, N.C. Dahl, T.J. Lardner, An Introduction to the Mechanics of Solids, McGraw-Hill Inc, 1978.
  14. MatWeb-The Online Materials Information Resource, 2021. Retrieved 20 April 2021, http://www.matweb.com/search/DataSheet.aspx?MatGUID=abc4415b0f8b490387e3c922237098da&ckck=1.
  15. E.P. DeGarmo, J.T. Black, R.A. Kohser, Materials and Processes in Manufacturing, Wiley, 2003.
  16. ABAQUS Version 6.13 User's Manual, Dassault Systemes, SIMULIA Corp., Velizy-Villacoublay, France, 2013 .
  17. P. Dong, A structural stress definition and numerical implementation for fatigue analysis of welded joints, Int. J. Fatig. 23 (2001) 865-876. https://doi.org/10.1016/S0142-1123(01)00055-X
  18. P. Dong, J.K. Hong, D.A. Osage, M. Prager, Master S-N curve method for fatigue evaluation of welded components, Weld. Res. Counc. Bull. 474 (2002) 1-44.